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Traceability of software artefacts has been recognised as an important factor 
for supporting various activities in the software system development process. 
In general, the objective of traceability is to improve the quality of software 
systems. More specifically, traceability information can be used to support the 
analysis of implications and integration of changes that occur software 
systems; the maintenance and evolution of software systems; the reuse of 
software system components by identifying and comparing requirements of 
new and existing systems; the testing of software system components; and 
system inspection, by indicating alternatives and compromises made during 
development. Traceability enables system acceptance by allowing users to 
better understand the system and contributes to clear and consistent system 
documentation. 

Over the last few years, the software and system engineering 
communities have developed a large number of approaches and techniques to 
address various aspects of traceability. Research into software traceability has 
been mainly concerned with the study and definition of different types of 
traceability relations; support for the generation of traceability relations; 
development of architectures, tools, and environments for the representation 
and maintenance of traceability relations; and empirical investigations into 
organisational practices regarding the establishment and deployment of 
traceability relations in the software development life cycle. However, despite 
its importance and the work resulted from numerous years of research, 
empirical studies of traceability needs and practices in industrial organisations 
have indicated that traceability support is not always satisfactory. As a result, 
traceability is rarely established in existing industrial settings. 

In this article, we present a roadmap of research and practices related to 
software traceability and identify issues that are still open for further research. 
Our roadmap is organised according to the main topics that have been the 
focus of software traceability research. 

  
Keywords: Software traceability, traceability relations, representation and 
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maintenance of traceability, deployment of traceability, software development 
process 

 
1. Introduction  
 
Software traceability – that is the ability to relate artefacts created during the 
development of a software system to describe the system from different perspectives 
and levels of abstraction with each other, the stakeholders that have contributed to the 
creation of the artefacts, and the rationale that explains the form of the artefacts – has 
been recognised as a significant factor for any phase of a software system 
development and maintenance process [ 46], and contributes to the quality of the final 
product. 

Typically, traceability relations denote overlap, satisfiability, dependency, 
evolution, generalisation/refinement, conflict and rationalisation associations 
between various software artefacts [ 51] (e.g. requirement specifications, software 
analysis, design, test models, source code), or contribution relations between 
software artefacts (typically requirement specifications) and the stakeholders that 
have contributed to their construction. Depending on whether traceability relations 
associate elements of the same artefact or elements of different artefacts, they can be 
distinguished into vertical and horizontal relations, respectively [ 36]. Another 
distinction is concerned with the notion of pre-traceability and post-traceability 
relations [ 26]. The former category includes relations between requirement 
specifications and the sources that have given rise to these specifications, i.e. the 
stakeholders that have expressed the views and needs which are reflected in them. 
The latter category includes relations between requirement specifications and 
artefacts that are created in subsequent stages of the software development life cycle. 

Depending on their semantics, traceability relations present information that can 
be used in different ways in the software development life cycle. For instance, 
traceability relations may be used to support the assessment of the implications of 
changes in a system and the effective execution and integration of such changes 
during the development, maintenance, and evolution of a system. They may also be 
used to support various types of analysis that can establish whether a system meets its 
requirements (coverage and verification analysis), whether the requirements set for a 
system are those intended for it (validation). Furthermore, they may facilitate: (a) 
system testing by relating requirements with test models and indicating routes for 
demonstrating product compliance; (b) system inspection by helping inspection teams 
to identify alternatives and compromises made during development; and (c) system 
acceptance by allowing users to understand and trust specific choices that have been 
made about the design and implementation of a system. Finally, they may lead to the 
reuse of system components when these components are related to requirements of 
existing systems that are similar to requirements of new systems [ 13]. 
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Overall, as suggested by Lindval and Sandhal [ 36], the establishment of 
traceability relations makes the documentation of a system clear and consistent, and 
makes the process of maintaining the system less dependent on individual experts. 

Many approaches have been proposed to support software traceability. Research 
into software traceability has been particularly concerned with: 
(a) the study and definition of different types of traceability relations [ 16,  19,  23,  27, 

 31,  35,  36,  47,  50,  61]; 
(b) the provision of support for their generation [ 1,  4,  23,  44,  39,  40,  61]; 
(c) the development of architectures, tools and environments for the representation 

and maintenance of traceability relations [ 10,  11,  55,  44], and 
(d) empirical investigations of organisational practices regarding the establishment 

and deployment of traceability relations during the software development life 
cycle [ 5,  8,  26,  36,  49,  51,  62].  
However, despite the wide recognition of its importance and numerous years of 

research, effective traceability is still rarely established in contemporary industrial 
settings [ 5,  51]. This phenomenon may be attributed to the difficulty in automating 
the generation of traceability relations with clear and precise semantics that could, 
adequately and cost-effectively, support the types of analysis necessary to deliver the 
benefits of traceability outlined above. Typically, most of the existing approaches, 
environments and tools assume either that traceability relations should be identified 
manually (e.g. [ 10,  27,  47]), or offer traceability generation techniques which cannot 
identify relations with a rich semantic meaning (e.g. [ 1,  4,  40]). In the former case, 
the cost of identifying traceability relations manually clearly outweighs the expected 
benefits of traceability and makes organisations reluctant to enforce them, unless 
there is a regulatory reason for doing so. In the latter case, the lack of a clear and 
precise semantics make the asserted relations of little use and do not provide the 
benefits of using traceability as described above. Therefore, the relevant techniques 
are not widely adopted in industrial settings. 

In this paper, we present a roadmap into the state of the art and practice in 
requirements traceability, discuss the main scientific and technological advances in 
this area, present the possible ways of establishing traceability that are available by 
current technology, and identify issues which require further research in this field. In 
the course of producing this roadmap, we have tried to be as objective and inclusive 
as possible. However, we may have not been entirely successful, as there is always a 
potential for missing out existing work and presenting approaches and techniques 
under the inevitable influence of personal perspectives and perceptions. To this end, 
our roadmap should be read in a critical way. 

The rest of this article is organised as follows. In Section 2, we discuss the main 
types of traceability relations that have been proposed in the literature and suggest a 
classification for these types. In Section 3, we present the main approaches and 
techniques for generating traceability relations from manual, semi-automatic, and 
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automatic perspectives. In Section 4, we outline the different approaches regarding 
the representation and maintenance of traceability relations in software development 
tools, and discuss the merit of each of these approaches. In Section 5, we discuss the 
various ways of using traceability relations in software development and maintenance 
settings, and present the implications that these ways have for other aspects of 
traceability, including the semantics of the deployed relations and requirements for 
their generation and maintenance. In Section 6, we present issues related to the 
semantics, establishment, representation and deployment of traceability relations 
which, in our view, are open to further research. Finally, in Section 7 we give a 
summary of the main findings of our roadmap. 

 
2. Types of Traceability Relations  
 
Stakeholders with different perspectives, goals and interests who are involved in 
software development may contribute to the capture and use of traceability 
information. Depending on their perceptions and needs, they may influence the 
selection of different types of traceability relations which are used in software 
development projects, and can establish project specific conventions for interpreting 
the meaning of such relations. As it has been suggested in [ 36] and [ 51], existing 
approaches and tools for traceability support the representation of different types of 
relations between system artefacts but the interpretation of the semantics associated 
with a traceability relation depends on the stakeholders. Moreover, different 
stakeholders are interested in different types of relations. For example, end users may 
be interested in relations between requirements and design objects as a way of 
identifying design components generated by or satisfying requirements; designers 
may be interested in the same type of relations but as a way of identifying the 
constraints represented as requirements associated with a certain design object. 

These phenomena are acknowledged by Dick [ 19] who has also stated that 
typically in industrial settings the semantics of traceability relations is very shallow 
and it is necessary to represent deeper and richer semantic traceability relations. 
Pinheiro and Goguen [ 44] have also asserted that traceability relations should have 
precise semantic definition to avoid the problem of culture-based interpretations. On 
the other hand, Bayer and Widen [ 6] suggested that in order to increase the use of 
traceability and, therefore, compensate for its cost, traceability relations should have a 
rich semantic meaning instead of being simple bi-directional referential relations.  

In order to overcome the lack of standard semantic interpretations of traceability 
relations and establish meaningful forms of semantics for traceability relations, 
various researchers have proposed approaches, reference models, frameworks, and 
classifications incorporating different types of traceability relations [ 2,  19,  26,  35,  36, 
 40,  46,  51,  68,  78]. These classifications are based on different aspects of traceability. 
For instance, some classifications are based on the types of the related artefacts [ 22, 
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 36,  46,  78], others are based on the use of traceability information in supporting 
different requirements management activities such as understanding, capture, 
tracking, evolution, and verification [ 19,  27,  51], or on impact analysis [ 68].  

In general, traceability relations can be classified as horizontal traceability or 
vertical traceability relations [ 36]1. The former type includes relations between 
different models, and the latter type includes relations between elements of the same 
model. Another classification focusing on requirements (requirements traceability) 
has been proposed in [ 46]. This classification includes 18 different types of 
traceability relations organised in five different groups. These groups are: (a) 
condition link group, which includes relations between requirements and restrictions 
associated with them; (b) content link group, which includes relations that signify 
comparisons, contradictions, and conflicts between requirements; (c) documentation 
link group, which includes relations associating different types of software documents 
to a requirement; (d) evolutionary link group, which includes replacement relations 
between requirements (e.g. a requirement X has replaced a requirement Y in 
requirements document); and (e) abstraction link group, which includes relations 
representing abstractions like generalisation and refinement between requirements. 

In this paper, we organise the various types of traceability relations proposed in 
the literature into eight main groups namely: dependency, generalisation/refinement, 
evolution, satisfaction, overlap, conflicting, rationalisation, and contribution 
relations. These groups are described below. In our discussion about these groups, we 
use the term element in a general way to represent the different parts, entities, and 
objects in software artefacts that are traceable. Examples of these elements are 
stakeholders, requirements statements, design components (e.g. classes, states), code 
statements, test data, etc. It is worth noting that this classification is not orthogonal. 
Thus, two elements e1 and e2, in different or in the same software artefact can be 
related by more than one type of relations.  

(a) Dependency relations – In this type of relations, an element e1 depends on an 
element e2, if the existence of e1 relies on the existence of e2, or if changes in e2 
have to be reflected in e1. In [ 51], the authors proposed the use of dependency 
relations between different requirements, and between requirements and design 
elements. In their framework, dependency relations can be used to support 
requirements management, express dependency between system components for low-
end users, and track compositions and hierarchies of elements. An application of this 
approach that supports the specification and evolution of workflow management 
systems by using dependencies between business process objects, decision objects, 
and workflow system objects has been proposed in [ 74]. Dependency relations are 

                                                           
1 In [ 9] the term "horizontal traceability" is defined as relations between models developed in one stage 

of the system development life cycle (the same model type), while the term "vertical traceability" is 
defined as relations between different models. However, in this paper we adopt the definition given in 
[ 36] 
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also suggested in [ 41] to support the management of variability in product and service 
families. In [ 68,  69], von Knethen et al. suggested the use of dependency relations 
between documentation entities (e.g. textual requirements, use cases) and logical 
entities (e.g. function, tasks) to assist with fine-grained impact analysis. Other forms 
of dependency relations are found in Spanoudakis and Zisman et al. [ 61,  78]. In this 
approach, dependency relations are called requires-feature-in relations and associate 
parts of use case specifications and customer requirements specifications. The 
requires-feature-in relations denote that a certain part of a use case cannot be realised 
without the existence of structural and functional features required by the 
requirement, or that one requirement depends on the existence of a feature required 
by another requirement. In Maletic et al. [ 39], dependency relations are called causal 
conformance and are used between software documents to represent an implied 
ordering in the production of the related documents (e.g., bug reports cannot be 
produced before implementation report). In [ 27], dependency relations are called 
developmental relations and are used to describe the logical structure of development 
and provide tracing requirements through the artefacts generated during the other 
phases of the software development life cycle. In the Software Information Base 
(SIB), that is an approach for building software repositories to support software reuse 
[ 14], dependency relations are realised as correspondence relations between 
requirements, design, and code artefacts. Dependency relations have also been used 
for requirements [ 2,  47], scenarios, code, and model elements [ 22], and to support the 
design and implementation of product lines [ 53].  

(b) Generalisation/Refinement relations – This type of relations is used to 
identify how complex elements of a system can be broken down into components, 
how elements of a system can be combined to form other elements, and how an 
element can be refined by another element. In [ 46], these relations are classified as 
abstraction links and represent abstractions between trace requirements. In the case 
study developed in [ 51], generalisation abstractions are seen as a special type of 
dependency relations. In [ 68,  69], Generalisation/Refinement relations are used to 
represent logical entities at different levels of abstraction. Generalisation/refinement 
relations are also used in the approach proposed in [ 74] to support associations 
between business process, decision, and workflow system objects. In [ 27], they are 
called containment relations and associate requirement artefacts that together form a 
composite artefact. Other approaches that use generalisation/refinement relations are 
[ 35,  41,  44,  50]. 

(c) Evolution relations – Relations of this type signify the evolution of elements 
of software artefacts. In this case, an element e1 evolves_to an element e2, if e1 has 
been replaced by e2 during the development, maintenance, or evolution of the system. 
In [ 46], the authors suggested that this type of relations should be used to associate 
requirements and use specialisations of this type called replace, based_on, formalize, 
and elaborate relations. In  51], evolution relations specify process-related links that 
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are used by high-end users to document the input-output relationship of actions 
leading from existing elements to new (or modified) elements and, therefore, identify 
the origins of the elements. In TOOR [ 44], evolution relations are called replace and 
abandon relations. A replace relation is used to signify that a requirement has 
changed. An abandon relation is used to signify that a requirement is unnecessary 
(i.e., it has been discarded). In [ 39], evolution relations are called non-causal 
conformance relations and are used to represent the fact that different documents, or 
their parts, conform to each other without necessarily having clear causality between 
them. An example of this case is related to the existence of multiple versions of the 
same documents. In Gotel and Finkelstein [ 27], evolution relations are called 
temporal relations and are used to associate requirement artefacts in order to 
represent the history of their development. In the Remap project [ 50], evolution 
relations between requirements are captured by using trace rules and are represented 
in a knowledge base. Evolution relations are also present in SIB [ 14] to signify 
derivations between requirements, design, and code artefacts. 

(d) Satisfiability relations – In this type of relations, an element e1 satisfies an 
element e2, if e1 meets the expectation, needs, and desires of e2; or if e1 complies 
with a condition represented by e2. In [ 46], this type of relations is classified within 
the condition link group, which associates restrictions to requirements and contains 
constraints and pre-condition links. In [ 51], satisfiability relations have been 
proposed as associations between requirements and system components (e.g. design 
components) and are used to ensure that requirements are satisfied by a system. The 
satisfaction relations are product-related links, i.e. they describe properties of 
elements independent of how they were created. They are used to represent that 
requirements are satisfied by the system and to relate one or more requirements, 
design, implementation elements, and compliance verification procedures. In [ 2], 
satisfiability relations are specified between use cases. In [ 19], in order to allow rich 
traceability, two types of satisfiability relations have been proposed: (i) establishes 
relation, a one-to-one relationship which represents links between main arguments of 
a system and the requirements satisfying these arguments, and (ii) contributes 
relation, a many-to-many relationship which represents links between arguments and 
requirements that contribute to the satisfaction of the arguments. In TOOR [ 44], 
requirements satisfiability is defined based on the notion of derivation and 
refinement: (a) if a requirement r1 is satisfied, its derived requirement r2 should also 
be satisfied; however, if a derived requirement r2 is satisfied, this does not mean that 
r1 is also satisfied; (b) if a requirement r1 refines a requirement r2, then satisfying r2 
implies on satisfying r1. CORE [ 17] tool also supports satisfiability relations between 
design and requirements artefacts. 

(e) Overlap relations – In this type of relations, an element e1 overlaps with an 
element e2, if e1 and e2 refer to common features of a system or its domain. In [ 61, 
 78], overlap relations are used between requirement statements, use cases, and 
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analysis object models, while in  16 such relations are used between goal 
specifications represented in i* models, use cases, and class diagrams. In the 
classification given in [ 46], an overlap relation is a documentation link that relates 
requirements with different types of documents such as test case, purpose, comment, 
background information, and examples. In [ 68,  69], overlap relations are called 
representation relations and represent relationships between document entities 
representing the same logical entity. The approach proposed in [ 22,  23] uses overlap 
relations between scenarios specifications and other model elements such as data 
flow, class, and use case diagrams. In PuLSE-BC (Product Line Software 
Engineering Baselining and Customisation [ 6,  7]), potential traceability relations are 
defined based on overlaps of models that are identified based on name matching. The 
overlap relations between source code and requirements or manual documents 
proposed in [ 4] and [ 40] are identified using probabilistic and vector space IR 
techniques. In [ 27] overlap relations are called adopts relations (a subtype of 
connectivity relation) and are used to associate requirement artefacts.  

(f) Conflict relations – This type of relations signifies conflicts between two 
elements e1 and e2 (e.g., when two requirements conflict with each other). Conflict 
relations have been proposed in [ 2,  46,  51,  73,  79]. In [ 51], conflict relations are used 
to signify conflicts between requirements, components, and design elements, to 
define issues related to these elements, and to provide information that can help in 
resolving the conflicts and issues. This information is recorded by using specialised 
conflict resolution relations, namely based_on, affect, resolve, and generate relations 
between requirements artefacts and the rationale, decisions, alternatives, and 
assumptions associated with them. In [ 46], conflict relations are classified in the 
content link group. In [ 32,  79], conflicts are represented by inconsistency relations 
between requirements and design artefacts and are identified by using a goal-based 
approach. In this approach, inconsistency relations are established when similar goals 
cannot be achieved in two different specifications, or in parts of the same 
specification. Inconsistency relations between design artefacts are also used in [ 76]. 

(g) Rationalisation relations – Relations of this type are used to represent and 
maintain the rationale behind the creation and evolution of elements, and decisions 
about the system at different levels of detail. In [ 51], rationalisation relations are 
captured based on the history of actions of how elements are created. In [ 35], 
rationalisation relations are expressed between traceable specifications (a software 
specification with different level of granularity such as document, model, diagram, 
use case, etc.) and a rationale specification (a document containing assumptions or 
alternatives to a traceable specification). Remap [ 50] also captures design rationale 
and represent them in a knowledge base. Rationalisation relations are also found in 
[ 46] and [ 54].  

(h) Contribution relations – Relations of this type are used to represent 
associations between requirement artefacts and stakeholders that have contributed to 
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the generation of the requirements. Contribution relations were initially proposed by 
Gotel and Finkelstein [ 27] to support requirements pre-traceability. Pre-traceability is 
the ability to relate a requirement (called "contribution") with the stakeholders that 
expressed it and/or contributed to its specification (called "contributors"). Their 
approach identifies three different types of contributors: (a) principals who motivate 
the production of artefacts are committed to what is expressed in the artefacts, and are 
responsible for the consequences of the artefacts for the system; (b) authors, who 
choose, formulate, and organise the content and structure of the information in the 
artefacts; and (c) documentors, who capture, record, or transcribe the information in 
the artefact.  

Table 1 presents a summary of the various approaches for the different types of 
traceability relations that have been proposed in the literature and the types of the 
software artefacts that these types may interrelate. We also represent associations 
between the different types of artefacts and stakeholders. In this table, software 
artefacts, or their parts, are distinguished depending on the phase of the software 
development life cycle that they are created in. More specifically, we classify 
artefacts as: (a) requirements, (b) design, (c) code, and (d) others (e.g. goal 
documentation, test cases, rationale and purpose documentation, etc). The columns of 
the table represent the eight different types of traceability relations discussed above, 
the rows represent combinations of different types of software artefacts, and the cells 
indicate the approaches that realise (in some form) the specific type of relation 
between the relevant types of artefacts. Empty cells in the table signify combinations 
of traceability relation and artefact types which, to the best of our knowledge, are not 
realised by any of the approaches that have been proposed in the literature. 

From Table 1, it is clear that most of the existing approaches have proposed 
different types of traceability relations that relate requirements specifications [ 2,  6, 
 14,  19,  22,  27,  35,  41,  44,  47,  50,  51,  69,  78], and  requirements with design 
specifications [ 14,  16,  17,  22,  35,  50,  51]. Some approaches have proposed 
traceability relations between code specifications and requirements and design 
artefacts [ 4,  22,  39,  51]. We attribute this to the fact that traceability was initially 
proposed to describe and follow the life of a requirement (i.e. requirements 
traceability [ 27]). In addition, the establishment of traceability relations involving 
code specifications and other software artefacts is not an easy task. It should also be 
noted that very few approaches support conflict [ 2,  32,  47,  51,  73,  79] and 
rationalisation relations [ 35,  50] despite the importance of these types of relations. In 
addition, only one approach has focused on contribution relations between 
stakeholders and requirements [ 27] despite the fact that contribution relations are 
important to establish the source of the requirement and to identify stakeholders that 
should be consulted in the case of changes to these requirements. 

The different types of traceability relations that have been proposed in the 
literature and the lack of a commonly agreed standard semantics for all these types do 
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not provide confidence in the use of traceability techniques and do not facilitate the 
establishment of a common framework to allow the development of tools and 
techniques to support automatic (or semi-automatic) generation of these relations. In 
our view, the establishment of standardised definitions for different types of 
traceability relations are necessary to: (a) assess the accuracy of established relations 
of these types in specific projects, and (b) develop tools and techniques to support the 
generation, maintenance and deployment of such relations. 

 
Table 1: Summary of the different types of traceability relations for different artefacts 

generated during various phases of the software development life cycle 

      Rel. Type 

Artefacts 

Dependency 

 

Generalisation

Refinement 

Evolution

 

Satisfiability

 

Overlap 

 

Conflict 

 

Rationalisation 

 

Contribution

 

Stakeholders - 

Requirements 

           Gotel 

et al   [ 27] 

Stakeholders - 

Design 

        

Stakeholders - 

Code 

        

Stakeholders - 

Other 

        

Requirements - 

Requirements 

Alexander 

[ 2] 

Gotel 

et al [ 27] 

Pro-Art [ 47] 

Ramesh 

et al [ 51] 

Von 

Knethen 

et al  [ 69] 

Rule-based 

tracer 

[ 78] 

Gotel 

et al [ 27] 

Letelier [ 35] 

Mohan 

et al [ 41] 

TOOR [  44] 

Remap [ 50] 

Pro-Art [ 47] 

Von Knethen 

et al [ 69] 

SIB [ 14] 

Gotel 

et al [ 27] 

TOOR 

[ 44] 

Remap 

[ 50] 

Pro-Art  

[ 47] 

 

Alexander 

[ 2] 

Dick [ 19] 

TOOR [ 44] 

Pro-Art [ 47]

 

Bayer et al 

[ 6] 

Egyed 

[ 22] 

Gotel 

et al [ 27] 

Rule-

based 

tracer 

[ 61,  78] 

Alexander 

[ 2] 

Pro-Art 

[ 47] 

Ramesh 

et al [ 51] 

Letelier [ 35] 

Remap [ 50] 

 

Requirements- 

Design 

SIB [ 14] 

Egyed [ 22] 

Ramesh 

et al [ 51] 

Letelier [ 35] 

Remap [ 50] 

Remap 

[ 50] 

Ramesh et al 

[ 51]  

CORE [ 17] 

Cysneiros 

et al [ 16] 

Egyed 

[ 22] 

Kozle-

nkov  & 

Zisman 

[ 32] 

Ramesh 

et al [ 51] 

Letelier [ 35] 

Remap [ 50] 

 

Requirements- 

Code 

Egyed [ 22] 

Maletic 

 Maletic et 

al [ 39] 

Ramesh et al 

[ 51] 

Antoniol 

[ 4] 
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et al [ 39] 

Requirements- 

Other  

 Letelier [ 35] 

Mohan 

et al [ 41] 

TOOR [ 44] 

 Dick [ 19] 

Ramesh 

et al [ 51] 

TOOR [ 44] 

Cysneiros 

et al  [ 16] 

Pro-Art 

[ 47] 

Ramesh 

et al [ 51] 

Letelier [ 35]  

Design - 

Design 

Egyed  [ 22], 

Von 

Knethen 

et al [ 69] 

Von Knethen 

et al [ 69] 

 Ramesh 

et al [ 51] 

 Xlinkit 

[ 73] 

Zisman 

et al [ 79] 

Ramesh 

et al [ 51] 

  

Design - 

Code 

SIB [ 14] 

Egyed [ 22], 

Maletic 

et al [ 39] 

Letelier [ 35] SIB [ 14] 

Maletic 

et al [ 39] 

Ramesh 

et al [ 51] 

  Letelier [ 35]  

Design - 

Other  

 Letelier [ 35]  Ramesh 

et al [ 51] 

 Ramesh 

et al [ 51] 

Letelier [ 35]  

Code - 

Code 

   Ramesh 

et al [ 51] 

    

Code - 

Other  

Maletic 

et al [ 39] 

 Maletic 

et al [ 39] 

Ramesh 

et al 

[ 51] 

    

Other - 

Other  

Xu 

et al [ 74] 

Letelier [ 35] 

Xu et al [ 74] 

 Ramesh 

et al [ 51] 

Rule-

based 

tracer 

[ 78] 

 Letelier [ 35]  

 
As described in the beginning of this section, reference models have also been 
proposed to support semantic interpretation of traceability relations. Ramesh et al. 
[ 51] have proposed the use of metamodels to support the representation of traceability 
information including types of different traceable elements and types of relations that 
may exist between these elements. The metamodel that they have proposed for this 
purpose is composed of entities and relationships that can be specialised and 
instantiated to represent traceability models used in specific organisations or projects. 
More specifically, their metamodel contains three types of entities. These are: (i) 
object entities, that signify the conceptual elements which may be related by 
traceability relations (e.g. requirements, assumptions, designs, rationale, system 
components, etc); (ii) stakeholder entities, that represent the agents involved in the 
system development and maintenance (e.g. project managers, system analysts 
designers, etc); and (iii) source entities, that represent the documentation of 
traceability information (e.g. requirements specifications, meeting minutes, designed 
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documents, etc). The relationships in their metamodel associate object instances 
through TRACES-TO links, stakeholders and source instances through MANAGES 
links, source and objects instances through DOCUMENTS links, and stakeholders and 
objects or stakeholders and traceability links through HAS-ROLES-IN links. These 
relationships can be specialised depending on the application or the views of the 
stakeholders.  

Applications and extensions of the traceability model and traceability links 
suggested in [ 51] have been proposed to assist in the specification and evolution of 
workflow management systems [ 68], identify common and variable requirements in 
product and service families [ 41], and assist software development process based on 
UML [ 35]. Another metamodel that supports capture of design rationale has been 
proposed in [ 50].  

With regards to support for different types of traceability relations, the study 
reported in [ 51] shows that many CASE tools do not support the identification of 
satisfiability relations. This is due to the difficulty in automating the specifications of 
relations that can be identified based on existing relations (e.g. by transitivity) and 
deficiency in representing satisfying requirements as well as the degree of 
satisfaction. Dependency relations are also minimally supported by traceability tools 
and there is lack of precise characterisation of dependency types and the strength of 
the relevant relations. On the other hand, software configuration management tools 
provide ways of representing and enacting evolution of coarse-grained artefacts, as 
well as notifying the users about changes. However, traceability tools only manage 
fine-grained objects. The study has also demonstrated that even experienced 
traceability users find difficult to capture complex traceability information. The 
authors suggested that it is necessary to develop abstraction mechanisms to support 
different granularity and sophistication when performing traceability, inference 
services to support semantics of traceability link types and access to large amount of 
traceability information, formal and informal trace description, and mechanisms to 
define and enact model driven trace process.  

 
3. Generation of Traceability  
 
The majority of contemporary requirements engineering and traceability tools offer 
only limited support for traceability as they require users to create traceability 
relations manually. The manual creation of traceability is expected in numerous 
techniques and approaches including [ 1, 2,  5, 6,  19,  27 44,  47] and tools (e.g. CORE 
[ 17], DOORS [ 64], PuLSE-BC [ 6], RDT [ 52], RTM [ 30], RETH [ 31]). As the 
manual creation of traceability relations is difficult, error-prone, time consuming and 
complex, despite the advantages that can be gained, effective traceability is rarely 
established manually unless there is a regulatory reason for doing so. To alleviate this 
problem, some approaches which support automatic or semi-automatic generation of 
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traceability relations have been proposed (see [ 4,  12,  22,  29,  34,  40,  44,  47,  50,  61, 
 78]).  

In the following, we describe the different approaches to the generation of 
traceability relations, grouped according to the level of automation that they offer. 
This level ranges from manual, to semi-automatic, and fully automatic generation. 
We also compare these approaches with respect to the level of effort that they require 
in establishing the traceability relations, the complexity of their use, the maturity of 
their development, and the precision of the relations that they can generate. 

 
3.1 Manual generation of traceability relations  
 
In this group of approaches, manual declaration of traceability relations is normally 
supported by visualisation and display tool components, in which the documents to be 
traced are displayed and the users can identify the elements in the documents to be 
related in an easier way. Examples of this situation occur in tools like RETH [ 31], 
DOORS [ 64], RTM [ 30], RDT [ 52], and extensions of DOORS such as [ 2,  19]. The 
majority of these approaches claim to support (semi-)automatic traceability 
generation, since the relationships are identified manually, but the links between the 
elements being related are automatically generated by the supporting tool based on 
these relationships. However, in our opinion, these approaches are considered 
manual, as they expect the user to identify and mark the elements to be traced. In 
addition, some of these tools provide no support for defining the semantics of 
traceability relations in a declarative and enforceable axiomatic form (e.g. RETH 
[ 31], DOORS [ 64] and RTM [ 30]).  

The approach in [ 1,  2] has been implemented on top of the requirements 
management tool DOORS [ 64] to allow generation and organisation of traces into 
groups such as use cases and requirements, instead of having traces belonging only to 
atomic objects (individual requirements). Here traceability hyperlinks are created 
based on the manual specification of satisfiability, dependency, and conflict relations 
(see Section 2) between use cases and requirements, and fuzzy matching between use 
case names and references. The relationships are specified by the use of a special-
purpose screen in which the users relate the names and object identifiers of groups of 
use cases and requirements. The HTML hyperlinks are constructed by the tool and 
can be visualised and navigated by using a web browser. The rich traceability 
approach proposed in [ 19] has also been implemented on top of DOORS [ 64]. It uses 
a rich traceability explorer tool to support visualisation of the objects being traced and 
the traceability links.  

In [ 27], the contribution relations (see Section 2) are manually defined in the 
artefacts, in an interactive way, and represented as hypertext mark-ups using the 
Standard Generalized Markup Language (SGML). A prototype tool has been 
developed to support visualising and querying the artefacts stored in an online 
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repository, agents, and relations; interactive definitions of traceability relations and 
agent details; and inference of agent capacities, social roles and commitments based 
on pre-defined rules.  

The approach in [ 6] (PuLSE-BC) is still theoretical and tools to support 
automatic generation of potential traces between product family metamodels (e.g. 
views, models, and life cycle stages such as scoping, architectural, and 
implementation), based on name matching, have not yet been implemented.  

Although the approaches in [ 2] and [ 19] provide the users with advanced support 
for visualising and navigating through the generated traceability relations, the effort 
to establish these relations is still high, especially when dealing with large and 
complex artefacts. The correctness of the traceability relations generated in [ 1] and 
[ 2] relies on understanding the semantics of the relations by the users who identify 
them. And as this understanding can differ between the users involved in the process, 
different interpretations and inconsistencies may arise when referring to the relations. 

 
3.2 Semi-automatic generation of traceability relations  
 
In order to overcome the issues associated with the manual generation of traceability 
relations, some approaches have been proposed in which traceability relations are 
generated in a semi-automatic way. We organise the semi-automatic traceability 
generation approaches into two groups: (a) pre-defined link group, that is concerned 
with the approaches in which traceability relations are generated based on some 
previous user-defined links [ 11,  12,  22,  23], and (b) process-driven group, that is 
concerned with the approaches in which traceability relations are generated as a result 
of the software development process [ 46,  47]. 

An example of a pre-defined link group approach has been proposed by Egyed 
and Gruenbacher [ 22,  23]. Egyed and Gruenbacher suggest the use of a rule-based 
scenario-driven approach to support the generation and validation oftrace 
dependencies between scenarios, code, and model elements such as data flow, class, 
and use case diagrams. In this approach, traceability dependencies are generated and 
validated based on observed scenarios of the software system being developed, and 
on manually defined hypothesised traces, that link artefacts with these scenarios. 
Manually detected overlaps between scenarios and model elements of the system are 
represented as a footprint graph, which is normalised and refined. This footprint 
graph is used to support automatic generation and validation of new traceability links 
between model elements, model elements and code, and model elements and 
scenarios based on rules. The new trace dependencies are derived based on: (a) 
transitive reasoning (i.e., if A depends on B and B depends on C, then A depends on 
C); and (b) share used of common ground (code) (i.e., the use of the criterion that if A 
and B depend on subsets of a common ground and these subsets overlap, then A 
depends on B). This approach has been validated on a library loan system and on a 
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video-on-demand system [ 23]. 
In [ 11,  12], Cleland-Huang et al. proposed an event-based approach to support 

generation of traceability links between requirements and performance models [ 12], 
and between non-functional requirements and design and code artefacts [ 11]. Similar 
to [ 22], in their approach fine-grained traceability links are dynamically generated 
during system maintenance and refinement based on user-defined links. These user-
defined links are specified during inception, elaboration, and construction of the 
system. Their event-based technique supports dynamic trace generation based on 
invariant rules of design patterns which are used to identify critical components of 
classes.  

PRO-ART [ 47] is an example of a process-driven approach in which traceability 
relations are generated as a result of creating, deleting, and modifying a product by 
using development tools (process execution environment). The development tools 
must ensure: (a) the recording of execution, input and output of each action related to 
the creation, deletion, and modification of a product in a trace repository, (b) 
generation of dependency links between two dependent objects, and (c) recording of 
the stakeholder performing the action and relationships between the action being 
executed and previous actions.  

Although the above approaches may be considered an improvement when 
compared with the manual approaches, the identification of the initial user-defined 
links required by some of the approaches may still cause traceability to be error-
prone, time consuming, and expensive. In addition, the tools that have been 
developed to support these approaches [ 12,  22] are prototypes implemented to 
illustrate and evaluate the approaches and not to be used in large-scale industrial 
settings. In the case of the process-driven approach, the generated traceability 
relations are dependent on the way that the system is developed.  

 
3.3 Automatic generation of traceability relations  
 
Recently, there have been proposals of approaches to support automatic generation of 
traceability relations. Some of these approaches use information retrieval (IR) 
techniques [ 4,  29,  40], others use traceability rules [ 50,  61,  78], special integrators 
[ 55], and inference axioms [ 45].  

The use of information retrieval techniques to support generation of traceability 
relations has been proposed in [ 4,  29, 40]. In [ 4], a traceability relation is established 
between a requirement document and source code component, if the document 
matches a query specified as a list of identifiers extracted from the source code. 
Depending on the similarity between queries and documents, a ranked list of 
documents for each source code component is produced. Queries are matched with 
documents using probabilistic and vector space IR techniques. This approach is based 
on the assumption that the vocabulary of the source code identifier overlaps with 
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various items of the requirements documents due to the fact that programmers 
normally choose names for their program items from the application-domain 
knowledge. This work has been reported to produce traceability relations at low 
levels of precision and reasonable levels of recall. It should be noted, however, that 
the relations produced by this approach can only represent overlap relations between 
elements in different system artefacts that refer to common features of a system.  

Another approach that automates the generation of traceability relations using 
vector space IR techniques has been proposed in [ 29]. This approach attempts to 
reduce the number of missed and irrelevant traceability relations by using a classical 
vector IR model technique, and a classical vector IR model technique extended with 
the use of key-phrase lists or the use of thesauruses. The study has demonstrated that 
the use of a key-phrase list can improve the recall of the generated relations (fewer 
missed relations), but decreases their precision (i.e., it generates more irrelevant 
relations) when compared to classical vector IR techniques. It has also demonstrated 
that the use of a thesaurus outperforms in terms of recall and, sometimes, also in 
terms of precision the use of key-phrases.  

The approach proposed in [ 39] is based on the use of Latent Semantic Indexing 
(LSI) to generate traceability links between system documentation (e.g., manual, 
requirements, design or test suites) and source code. This approach does not depend 
on the specification language used to produce the documentation of a system and the 
programming language used in the source code. It takes into consideration synonym 
terms since it uses linear combinations of terms as dimensions of the representation 
space. In this approach, a corpus is built based on pre-processing of the documents 
and source code. A traceability link between two documents is established when the 
semantic similarity measure of these documents is greater than a threshold. A 
comparison of this work with the work in [ 4] demonstrates that both recall and 
precision results are better in [ 40].  

In the rule-base tracer proposed in [ 61,  77,  78], traceability relations between 
requirements statements, use cases, and analysis object models are automatically 
generated by using XML-based traceability rules. The rules are used to identify 
syntactically related terms in the requirements and use case documents with 
semantically related terms in an object model. The documents to be traced are 
represented in XML and the generated relations are represented as hyperlinks and 
expressed as an extension of Xlink [ 18]. The approach has been evaluated in case 
studies for a family of software-intensive TV systems and for a university course 
management system. The levels of recall and precision achieved by this approach in 
the reported case studies are promising: recall and precision measures range between 
50% and 95%. These results provide evidence of the ability of the approach to 
support automatic generation of traceability relations.  

Another approach that supports the automatic generation of traceability relations 
between requirements and design artefacts based on trace rules has been proposed in 
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the Remap project [ 50]. This approach also supports arbitrary chaining of rules in 
which the conclusion part of a rule can become part of the condition part of another 
rule. The generated traceability information is maintained in a knowledge base and 
may be used for further reasoning. An extension of Remap that allows the 
identification of commonality and variability traceability management in the 
development of e-service families (e.g. Internet, wireless and land-based 
telecommunication systems) between customer requirements and design artefacts has 
been proposed in [ 41].  

In [ 55], Sherba et al. have proposed an approach that allows the generation of 
new traceability relations based on relationship chaining. This approach uses special 
integrators, which can discover and create traceability relations between software 
artefacts and other previously defined relations. The new identified relations can be 
generated based on indirect and transitivity dependencies, complex dependencies 
containing more than one source or destination elements being related (anchors), 
intersection of anchors, or matching of pre-defined conditions between artefacts 
and/or relations. When more than one chaining option is available for certain 
documents, the user has to choose a specific chain of relation type. At the time of 
writing of this paper, this approach was still in early stage of its development and no 
prototype tool was implemented.  

In TOOR [ 44], traceability relations are defined and derived in terms of axioms. 
Based on these axioms, the tool allows automatic identification of traceability 
relations between requirements, design, and code specifications. TOOR also supports 
derivation of additional relations from the axiomatic definitions by transitivity, 
reflexivity, symmetry, extraction, and dependency. In addition, it allows users to 
define traceability relations manually. 

It has to be appreciated that, although none of the above approaches can fully 
automate the generation of traceability relations, they have taken significant steps 
towards this direction. However, the achievement of acceptable levels of recall and 
precision that would increase the trustworthiness of the generated links is still 
missing. At the moment, there is no consensus of what could be considered as 
satisfactory recall and precision rates in industrial settings. 

Also, existing approaches do not always deliver the relations that they can 
generate at adequate performance levels (see Section 6). It is also important to note 
that the majority of the developed approaches (e.g. [ 4,  29,  40]) have been 
implemented only as prototype tools and, therefore, they have not achieved a level of 
maturity required for large-scale use. 

The approaches described in [ 44] and [ 61] are easy to use once a complete set of 
traceability relation generation rules and axioms have been identified. This, however, 
is not always easy. As a way of addressing this problem, in [ 58] the authors have 
proposed a machine learning algorithm, which generates new traceability rules, based 
on examples of undetected traceability relations identified by the users.  
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4. Representation, Recording and Maintenance of Traceability Relations  
 
The representation, recording and maintenance of traceability relations in different 
tools and environments are supported by a wide range of architectural approaches. 
These approaches can be distinguished into five main types, depending on the level of 
integration that they assume between the artefacts and traceability relations, and the 
representation framework that they use to store the artefacts and relations. These 
approaches are: 
(a) the single centralised database approach; 
(b) the software repository approach; 
(c) the hypermedia approach;  
(d) the mark-up approach; and 
(e) the event-based approach  

The main characteristics of each of these approaches and their merit in 
supporting traceability are discussed in the following. We also give examples of 
requirements management, CASE and traceability tools, and environments that 
realise each of the above approaches along with brief overviews of the ways in which 
they do it. 

 
4.1 Single centralised database approach 
 
In this approach, both the artefacts and the traceability relations that can be created 
between them are stored in a centralised database, which typically underpins the tool 
that is used to maintain the traceability relations. Most of the industrial requirement 
management tools that support traceability advocate this approach (e.g. DOORS [ 64], 
RTM [ 30]). Typically, these tools store the traceability relations between artefacts in 
an underlying relational database [ 51]. However, there are also tools based on object-
oriented (e.g. TOOR [ 44]) or proprietary database technology. 

The main benefit of using an underlying database is that the processing of the 
recorded relations can be based on extensive and efficient querying facilities that are 
available from this database. It has, however, to be appreciated that this approach 
makes it difficult to record and maintain traceability relations between artefacts which 
are not generated by the tool that manages the relations. To alleviate the problem of 
recording, some of the tools provide artefact importing and exporting capabilities 
(e.g. [ 30,  64]). Such facilities give some degree of flexibility, but are normally 
available only for artefacts created by other tools of the same vendor or by tools 
which operate on a common artefact representation framework (DOORS [ 64], for 
instance, provides import and export capabilities for artefacts which are constructed 
and managed by most of the popular CASE tools). It should be noted, however, that 
import and export facilities cannot support the effective maintenance of traceability 
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relations between evolving artefacts, which are maintained by separate tools. 
Furthermore, it has to be appreciated that, depending on the type of the 

underlying database, this approach may make it difficult to differentiate between 
different types of traceability relations. In tools which use relational or proprietary 
databases, for instance, it is difficult to define different types of relations and specify 
constraints for monitoring the integrity of the generated relations. 

 
4.2 Software repositories 
 
A second approach is to record traceability relations in a centralised software 
repository along with the artefacts that they relate [ 14,  46]. The main difference of 
this approach with the single database approach is that software repositories provide 
sufficient flexibility for defining schemas for storing a wide range of software 
artefacts and traceability relations between them. In addition, software repositories 
provide application programming interfaces (APIs) which implement data definition, 
querying, and management facilities that may be used to link them in client-server 
architectures with other tools which are used to construct the involved software 
artefacts. 

The Software Information Base (SIB) [ 14] is an experimental repository system 
that can support the definition of complex semantic structures for holding information 
about artefacts and traceability relations at an infinite number of classification layers 
based on the data model of the conceptual modelling language TELOS. SIB defines 
traceability relation types that correspond to what in this paper has been termed as 
dependency and evolution relations. It also allows the definition of arbitrary 
additional types of traceability relations, and provides an API through which it may 
be connected as an information server to external tools. 

PRO-ART [ 47] is a process centred requirements engineering environment which 
also advocates the software repository approach. PRO-ART assumes a process 
centred integration of tools that are used to create and maintain the involved software 
artefacts. More specifically, PRO-ART assumes the explicit specification of 
processes, which can create the involved artefacts. These processes are defined in 
terms of artefact creation, deletion, and modification actions. These actions are 
realised by different tools operating on the top of the underlying PRO-ART 
repository. Traceability relations in this environment are recorded as a by-product of 
executing such actions on the artefacts that they are meant to relate. For example, 
when a developer creates a textual rationale for an object class, PRO-ART 
automatically creates a rationalisation relation between the class and the textual 
annotation. In PRO-ART, the text providing the rationale may be created by text 
editor that is different from the tool that was used to create the related class. 
However, by virtue of monitoring the enactment of an underlying process model, 
PRO-ART is able to identify the purpose of invoking the text editor and create the 
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relevant rationalisation relation. The main benefit of this process-centric approach is 
that it allows the definition of ways of capturing traceability relations as part of 
software development processes and, thus, it can monitor or enforce the systematic 
capture of such relations (this need has been suggested by case studies − see [ 20] for 
example). 

Overall, the software repository approach requires a heavy up-front tool 
integration effort to support traceability that may not be desirable, or feasible, in 
distributed software development settings. Furthermore, in realisations of this 
approach along the lines suggested by PRO-ART, additional effort is required for 
modelling the processes supported by the individual tools and their co-ordination of 
these processes in the context of a software development life-cycle model. 

 
4.3 The hypermedia approach 
 
To solve the problem of maintaining traceability relations as the artefacts that they 
associate evolve without having to integrate the relevant tools around a software 
repository, some tools advocate an approach based on open hypermedia architectures 
[ 71]. 

Sherba et al [ 55] have developed a traceability management, called TraceM that 
realises this approach. TraceM is a research prototype system at an experimental 
development stage, which supports the recording, maintenance, and traversal of 
relations between software artefacts that are constructed by heterogeneous tools. 
TraceM stores traceability relations separately from the artefacts that they associate. 
A traceability relation in this system can be defined as an n-ary association between 
artefacts of different types, or their parts, by using metadata. These metadata specify: 
(i) the types of the artefacts associated by a relation, (ii) the external tools that create 
these artefacts, (iii) transformers that can be used to transform artefacts into the 
common representation framework of TraceM, and (iv) integrators which can be used 
to automatically discover and create the traceability relations. Metadata are also used 
to specify the types of stakeholders which may be interested in different types of 
traceability relations and the stages in a project when these relations are needed. 
Using a scheduling service that is provided by the system, developers can also specify 
the conditions for invoking artefact translators (e.g., a translator may be invoked any 
time when a new version of an artefact is created) and integrators. To take full 
advantage of its services (e.g. to navigate between artefacts using recorded 
traceability relations), developers have to integrate the external tools that are used for 
creating artefacts with TraceM. This integration is possible using standard techniques 
available in open hypermedia environments. In cases of artefacts which are created by 
non integrated external tools, developers may use TraceM to record and view 
relations. 
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4.4 The mark-up approach 
 

To enable traceability in widely distributed and heterogeneous software engineering 
settings, some systems advocate the use of representations of traceability relations 
using mark-up languages and store these relations separately from the artefacts that 
they associate. 

Gotel and Finkelstein [ 27], have developed a toolkit that can be used to create 
and maintain contribution relations. This toolkit uses a combination of HTML and 
descriptive mark up representations to store different types of contribution relations 
between artefacts as hyperlinks (i.e. relations with hypertext trace anchors that can 
provide the required navigational capabilities). Maletic et al. [ 39] have also developed 
a tool in which traceability relations are stored as "hyperlinks" of different types. 
These types specify the arity, directionality, and traversability of the relations. 

STAR-Track [ 56] is a web-based requirements tracing tool that uses tagging 
mechanisms to represent traceability relations. The tags in STAR-Track can represent 
document elements or relations between these elements. Each tag is composed of a 
document identifier and a title. The tagging method used in this approach is quite 
simple: users can either have the different sections in a document used as tags or 
define their own tags. The relations are denoted by the tag identifiers of the document 
elements related by them. 

In the rule-based tracer described in [ 61,  78], both traceability relations and the 
artefacts that they relate are represented in XML. Traceability relations, however, are 
recorded separately from the artefacts they relate, and XLink elements [ 18] are used to 
indicate the parts of the artefacts these relations refer to. This system also 
incorporates translators that can transform textual artefacts from their original format 
into XML, and supports standardised XML representations for other types of models 
(e.g. XMI for object models). The rule-based tracer does not require any form of tool 
integration and, at its current state of development, provides only primitive support 
for maintaining traceability relations when artefacts are modified. In such cases, the 
modified artefacts have to be re-translated into XML and the tool embarks in a full 
rule-based analysis of their contents to identify the traceability relations, which 
remain valid or emerge after the changes. 

 
4.5 The event-based approach 

 
Except from the centralised software repository approach, in all other approaches 
explained above, it is difficult to ensure that traceability relations between artefacts 
will always be updated after modifications of these artefacts.  

As a solution to this problem, Cleland-Huang et al. [ 10] have developed an 
event-based traceability (EBT) server for recording and maintaining traceability 
relations between requirements documents and other software artefacts. This system 
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is based on an event-notification mechanism that implements the observer pattern 
[ 25]. More specifically, the requirement documents can register their dependencies to 
other artefacts using the registry of the system. Following the registration of 
dependencies, their system monitors the artefacts and when any of them is modified, 
it notifies all the dependent requirements about the change. The requirement 
documents have responsibility for updating their contents if necessary. This system 
can be used for maintaining dependency relations once they are identified. However, 
it provides no support for identifying them. 

In terms of their support for interoperability, the event-based and mark-up 
approaches appear to be superior to centralised database and the software repository 
approach. The latter, however, appear to be stronger in terms of performance and 
offer better data management facilities.  

 
5. Deployment of Traceability 

 
Traceability relations may be deployed in the development life cycle of a software 
system to support different development and maintenance activities, including: 
 change impact analysis and management [ 12]; 
 system verification, validation, testing and standards compliance analysis [ 51];  
 the reuse of software artefacts [ 69]; and 
 software artefacts understanding [ 4,  40,  50,  51]. 

In the following, we overview ways in which traceability may support the above 
forms of analysis and discuss the main types of relations that can be used in these 
forms. We also discuss factors than can promote or prohibit the use of traceability in 
industrial settings as reported by relevant case studies [ 5,  49,  51].  

 
5.1 Traceability for change impact analysis and change management 

 
One of the primary drivers for establishing and maintaining traceability relations 
between different artefacts developed to document and implement software systems is 
the ability to use these relations during the entire life-cycle of a system in order to: (a) 
establish the impact that potential changes in some part of the system may have in 
other parts (i.e., change impact analysis), and (b) make decisions about whether or 
not such changes should be introduced, and with what priority (i.e., change 
management). 

The simplest form of analysing the impact of a change in a given artefact (e.g. a 
requirement statement) is the identification of all the other artefacts that will be 
affected by the change (e.g. design artefacts and code). Primitive change impact 
analysis requires the provision of basic querying facilities to retrieve traceability 
relations of specific types that may also have specific values for the properties 
defined for these types. Most of the existing traceability tools and environments 
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provide such querying facilities. 
However, more complex forms of change impact analysis may also be desired in 

different settings. Examples of these forms are: (a) the classification of affected 
artefacts into different groups subject to the exact effect that the change will have on 
them, (b) the identification of side-effects that the change may have, and (c) the 
estimation of the cost of propagating the change. The delivery of such capabilities 
requires support for the composition of different traceability relations into trace-
paths. These trace-paths can demonstrate how impact is propagated across artefacts 
that are not directly related. Compositions of traceability relations may be established 
by evaluating regular expressions [ 44], deductive rules [ 51], or traceability rules 
[ 61]. Some research prototypes provide such composition capabilities (e.g. TOOR 
[ 44], PRO-ART [ 47], and the rule-based tracer [ 61]). Most of the industrial 
traceability tools, however, can realise these capabilities only through the generation 
of appropriate scripts that can compute the required compositions. Support for the 
estimation of the cost of executing and integrating requested changes is provided at 
an inferior level. This is because the few cost estimation models (see [ 33] for 
example) that have been developed for this purpose cannot provide very precise cost 
predictions. 

In certain cases, the assessment of the impact of a change may also require the 
execution of a simulation model to demonstrate the potential effects of the change. 
This kind of analysis requires not only the establishment of specific types of 
traceability relations between the artefacts to be changed and the simulation model 
that can demonstrate the effects of the change, but also the ability to propagate 
changed values across these relations, to inject changed values into the simulation 
model, and to execute the change. The EBT system [ 10] offers such capabilities and 
has been used to analyse the effect of requirement changes onto the performance of 
software systems by using dependency relations between requirements and 
performance simulation models [ 12]. 

Clearly, the accuracy of both simple and complex forms of impact analysis 
depends on the semantics, granularity and accuracy of the traceability relations, 
which are taken into account. Relations that are established by virtue of identifying 
references to common entities in different software artefacts may provide some 
evidence that a change could potentially have an impact on an artefact, but cannot 
establish this impact, or its nature, with certainty. Examples are the overlap relations 
between requirements and object-oriented analysis models identified in [ 61,  78], or 
between source code artefacts and manual pages or requirements identified by 
information retrieval techniques in [ 4,  40]. On the other hand, traceability 
relationships with a rich semantic content (e.g. the dependency relations in [ 51] or the 
requires_execution_of relations in [ 61]) can lead to more accurate impact analysis 
results. 

The necessity of having traceability relations with rich semantics in order to be 
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able to perform accurate impact analysis has been clearly identified by empirical 
studies [ 8,  36]. Empirical research has also indicated that the accuracy of impact 
predictions depends on the granularity of the entities, which are associated by 
traceability relations. As reported in [ 8], fine-grain relations that associate specific 
entities/parts within broad models and documentation result in more accurate results. 
Industrial case studies have also indicated that software developers are often reluctant 
to rely on traceability relations that have been produced automatically due to doubts 
about the correctness of such relations [ 36]. 

 
5.2 Traceability for software validation, verification, testing and standards 

compliance  
 

Depending on their semantics, traceability relations can provide the basis for 
performing different types of analysis in order to ensure that a system implements the 
requirements desired by the stakeholders involved in its development (validation), 
verify that it satisfies certain properties and its specification (verification), test its 
individual components and the system as a whole, and assess its compliance with 
respect to existing standards. 

Pre-traceability contribution relations, for instance, may be used to identify 
stakeholders and involve them in requirement validation activities [ 27]. The ability to 
verify the satisfaction of the specification of a system and its required properties also 
depends on the existence of traceability relations with appropriate semantics. 
Preliminary system verification, for instance, can be performed by consulting and/or 
composing refinement, dependency and satisfiability relations to establish whether all 
the requirements of a system have been allocated to specific design and/or source 
code components [ 42] and [ 69]). Similarly, traceability relations may be used to 
check the existence of appropriate test cases for verifying different requirements and 
to retrieve such cases for further testing. The results of this preliminary verification 
analysis typically provide input to software inspection and auditing procedures [ 69]. 
They can also be correlated with the results of other forms of analysis, which may be 
carried out as part of inspection and auditing procedures (e.g. functional simulations, 
textual and syntactic analysis of code, and standards auditing [ 42]). Traceability 
relations may also be used in system reviews concerned with the assessment of 
requirements and design models. Haumer et al. [ 28], for instance, use goal attainment 
and failure pre-traceability relations between goal oriented requirement models and 
collections of observed cases of system usage encoded in multimedia (e.g., video and 
audio), in order to inform review activities which are concerned with the assessment 
of adequacy of these models.  

Traceability relations have also been used in automated forms of verification 
analysis, which are aimed at assessing the consistency of different models of the same 
system [ 21]. Spanoudakis et al. [ 59], for instance, present an approach that can be 
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used to rewrite formal requirement specifications in order to express overlap relations 
known to hold between their parts and make them amenable to consistency checking 
using theorem proving. Techniques for detecting overlap relations between structural 
and behavioural object-oriented models of software systems, and deploying them for 
checking the consistency of these models with respect to specific consistency rules 
are also discussed in [ 60]. In [ 24], Fiutem and Antoniol extract design models from 
the source code of a system, detect overlap relations between these models and the 
original design models that had been developed prior to implementation by using 
string matching algorithms, and use these relations to verify the consistency of the 
implementation with the original design. 

 
5.3 Traceability for software reuse 

 
Researchers have widely acknowledged the potential of traceability relations in 
identifying reusable artefacts in the software development life-cycle [ 4,  14,  69]. 
These artefacts may be at different levels of abstraction (e.g. source code, design or 
requirement artefacts) and can be identified and reused through different scenarios, 
which require the existence of different types of traceability relations. 

In the context of the Software Information Base [ 14] dependency traceability 
relations, called "correspondence" relations, are used to associate requirements 
specifications with design models, and design models with source code. These 
relations are established in the context of application frames which group artefacts of 
specific (or families of) software applications and must be asserted manually. 
Software engineers can follow these relations in order to locate concrete reusable 
artefacts in an application frame at low levels of abstraction (i.e., design and source 
code artefacts) once the possibility of reusing this frame (or parts of it) has been 
established. This possibility is established by assessing the similarity of application 
frame requirements with requirements for new systems. Similar approaches have 
been suggested in [ 19] and [ 42]. In [ 42], reusable design elements are identified 
through satisfiability, refinement or overlap relations that connect them with events, 
pre-conditions, and post-conditions in use case models. Also, as suggested in [ 4], 
traceability relations between source code artefacts (e.g. functions in code libraries) 
and manual pages can help software engineers understand the functionality of the 
former and appreciate the possibilities of using (or re-using) them in specific 
contexts. 

The traceability relations used in all the above approaches are vertical relations 
 36. Different opportunities based on the deployment of horizontal traceability 
relations between requirement specifications are suggested in [ 2] and [ 69]. The focus 
of the latter approach is the reuse of coarse-grain requirement specifications 
developed for families of software systems (or parts of these specifications) expressed 
as structured text. This process is termed "requirements recycling" and supports the 
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production of a requirements specification document for a new member in a system 
family that shares features with existing members but may also introduce new 
features, or drop and modify some of the existing ones. Driven from change scenarios 
that incorporate feature introduction, modification and deletion requests, this 
approach first locates parts in existing requirement documents that refer to the 
required features. Then it uses overlap, dependency, and refinement traceability 
relations that involve these parts to identify other parts in the documentation that can 
also be recycled. The new requirement document is produced by copying and pasting 
the latter parts. However, while preparing the new document, the approach suggests 
the investigation of overlap relations in order to identify possibly redundant parts that 
should be eliminated.  

 
5.4 Traceability for artefact understanding 

 
A significant driver for the generation of traceability relations is to use them in order 
to understand the artefacts that they involve in reference to the context in which they 
were created, or in reference to other artefacts related to them. This is particularly 
important in cases where the people who need to access, understand, and maintain the 
artefacts are not those who contributed to their creation, a phenomenon that is typical 
in software maintenance. 

The comprehension of source code artefacts is, for instance, one of the main 
objectives underpinning the generation of traceability relations between such artefacts 
and manual pages, requirement models [ 4,  38,  40] test cases, and system feature 
descriptions (e.g. Software Reconnaissance technique [ 71]), or design and domain 
analysis models [ 9]. The same objective of enabling code comprehension has driven 
the development of approaches which can trace components of programs generated 
by deductive synthesis (e.g. variable names, function calls) onto the specifications 
from which they were derived. These approaches (see [ 66] for example) use the 
formal proof that led to the generated program to construct overlap relations to parts 
of the specification that drove the derivation. 

Similarly, the use of rationalisation relations have been extensively suggested as 
a means of providing explanation about the form of requirement and design artefacts 
[ 28,  47,  50,  51]. Most of the traceability environments which support the recording of 
such relations (e.g. PRO-ART [ 47], REMAP [ 50]) record rationale based on variants 
of the IBIS model [ 13]. According to this model, artefact construction decisions can 
be represented in terms of the main issues that were considered in the construction 
process, the arguments that were articulated for these issues, and the positions taken 
by different stakeholders with regards to these issues. A slightly different approach is 
advocated in EColabor [ 62]. EColabor supports the recording of rationale for 
requirements specifications articulated around questions, answers, reasons, and 
commitments according to the Inquiry Cycle model using audio and video artefacts. 

 26



EColabor provides support for fine-grain traceability relations between requirements 
specifications and segments of audio and video artefacts, and facilities monitoring of 
on-going discussions.  

 
5.5 Empirical studies of the use of traceability 

 
Empirical studies about the use of traceability in industrial organisations have 
confirmed its deployment for supporting the activities outlined in the preceding 
sections. They have also indicated significant differences in relevant practices, which 
are influenced by numerous environmental, organisational, and technical factors. 

Based on the findings of a case study of 16 organisations in the US, Ramesh [ 49] 
has distinguished two different types of traceability users: the low-end and high-end 
users. Low-end users use traceability relations to allocate requirements to system 
components, inform system verification procedures, and manage changes in system 
development and maintenance life cycle. However, they do not view traceability as an 
important task in their development process and do not realise any form of "formal 
methodology" in their traceability practice. High-end users, on the other hand, are 
organisationally committed to traceability and tend to make extended use of it as part 
of well-defined system development policies. Thus, they capture traceability relations 
between artefacts created in the entire life cycle of a system and relations between 
artefacts and rationale. They also tend to customise the tools that they use to provide 
better support for their traceability practices. 

As indicated in other empirical studies [ 5], the main factor that prohibits the wide 
and effective use of traceability in industrial setting is the ability to establish 
traceability relations that could support the required forms of analysis in cost-
effective ways. The diversity of the artefacts which are generated in the software 
development life-cycle and the lack of interoperability between the tools that are used 
to construct and manage them, make the capture of traceability relations expensive 
and create the perception that the benefits from establishing traceability are not 
justified. Additional costs also arise from the need to train users to use the relevant 
tools and platforms. This makes traceability a cumbersome task for short-term 
projects [ 5]. 

Finally, it should be noted that, since the accuracy of forms of analysis that 
deploy traceability relations depends on the correctness and completeness of these 
relations and these properties cannot be guaranteed for neither manually nor 
automatically generated traceability relations, users tend to be reluctant to use 
traceability relations in such forms of analysis. Empirical studies (e.g. [ 37]) have 
confirmed this tendency and suggest that in cases where there is access to 
experienced software engineers, organisations rely on them for certain forms of 
analysis (e.g. change impact) rather than deploying recorded traceability relations, 
despite the cost of this approach. 
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6. Open Research Issues 

 
As discussed in the preceding sections, software traceability has been the focus of 
numerous as well as diverse research activities in the areas of software and systems 
engineering over the last 15 years. Numerous approaches tackling different aspects 
and issues of traceability have been proposed, and tools to support the establishment, 
maintenance and deployment of traceability during system development have been 
produced. However, despite these developments, empirical studies demonstrate that 
current technology does not provide sufficient support for traceability and, as a 
consequence, traceability is not widely adopted in industrial settings unless there is a 
regulatory reason for doing so [ 5,  49,  26,  51].  

In the following, we discuss the main issues, which in our view prevent the 
widespread use of traceability in industrial settings and should be addressed by 
further research. Our discussion has been based on our study of the literature, the 
experience that we have gained from building systems to support traceability for 
industrial organisations [ 61, 78], and discussions that have taken place as part of two 
international workshops on traceability that we have organised over the last two 
years, namely TEFSE 2002 [ 65] and TEFSE 2003 [ 66]. 

Evidently from Sections 2 and 3, there are relatively few approaches that can 
automate the generation of traceability relations. With some exceptions, the relations 
that can be generated by these approaches do not have the strong semantic meaning 
required for the most important forms of analysis that can be based on traceability. 
Overlap relations, for instance, which can be automatically generated by existing 
approaches have a very general referential meaning and cannot support effectively 
significant forms of analysis such as change impact analysis. On the other hand, a 
close analysis of the reviewed approaches reveals that, with the exception of TOOR 
[ 44], none of them can support the generation of satisfiability relations which are 
important for analysis related to software verification. This problem becomes more 
significant in the case of relations that involve artefacts, which incorporate chunks of 
text such as requirement specifications, descriptions of rationale, and test cases. Most 
of the existing approaches assume that traceability relations involving artefacts of 
these types must be asserted manually and only a few of the reviewed approaches 
(i.e., [ 4], [ 40] and [ 61]) support the automatic generation of traceability relations 
involving them. Thus, as the manual assertion of traceability relations is labour 
intensive, traceability is rarely established unless there is a regulatory reason for 
doing so. 

A possible way forward in the automatic generation of traceability relations 
could be the standardisation of vocabularies that may be used to model systems in 
specific application domains. Another solution along the same direction could be 

 28



based on the development of ontologies. Ontologies can provide formal specifications 
of common aspects of software systems and their domains (e.g. specifications of 
certain types of requirements in abstract forms). Thus they can be used as a starting 
point for building system models with the precise semantic meaning that is required 
for the generation of traceability relations. For instance, requirement satisfiability 
relations could be established by reasoning about the satisfiability of the axiomatic 
definition of a requirement in ontology by other system artefacts such as design 
specifications. 

Another problem related to the generation of traceability relations is the lack of 
mechanisms for verifying the correctness and completeness of these relations and, 
therefore, establishing the necessary degree of trust that is required for deploying 
them for further analysis with confidence. This is mainly an issue for approaches that 
automate the generation of such relations. At the moment, very few of these 
approaches provide mechanisms through which they could be tuned so as to achieve 
better performance in terms of correctness and completeness. A notable exception to 
this phenomenon is the rule base tracer discussed in [ 61]. This system uses historical 
assessments of automatically generated traceability relations provided by the users to 
compute degrees of confidence in the ability of its rules to generate correct relations 
for new sets of artefacts. These degrees of confidence can be used to de-activate and 
re-activate specific traceability rules if necessary [ 57]. It also uses machine learning 
techniques for generating traceability rule that could improve the levels of 
completeness that it achieves [ 58]. 

Clearly the levels of correctness and completeness which are required in different 
settings depend on the type of the involved traceability relations and the types of 
analysis that they are to be deployed for. In change impact analysis, for instance, it 
may be more desirable to have high completeness rather than correctness rates. On 
the other hand, in system verification and validation correctness seems to be more 
important. The development of clear guidelines for making decisions about 
performance criteria in specific settings and mechanisms for tuning different 
approaches, in order to achieve better performance are issues that need to be 
addressed by further research. It should be noted that mechanisms for verifying the 
correctness and completeness of traceability relations are necessary also for 
systems/approaches, which assume that such relations are asserted manually. This is 
because evidence from our empirical investigations has indicated that it is not 
unlikely to have different users suggesting different sets of relations for the same set 
of artefacts, depending on their interpretation of the contents of these artefacts.  

In the absence of sufficient support for the automatic generation and verification 
of traceability relations, the cost of establishing traceability in industrial settings is 
high. Given this, the systematic and widespread adoption of traceability as part of 
software development processes would certainly require clear evidence about the 
potential benefits from its deployment. Current empirical research fails to provide 
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hard quantitative evidence about these benefits and, to the best of our knowledge; 
methods that could be used to measure these benefits do not exist. Furthermore, 
although it has been argued that the adoption of 33 

traceability cannot be effective unless it is tailored to the needs of specific 
projects and organisations [ 20], there is little (if any at all) methodological support for 
identifying these needs and using them to inform traceability adoption and 
deployment strategies. The development of methodological support for this purpose 
should try to relate traceability establishment and deployment to the objectives of the 
involved organisations, the existing software development strategies, and the needs of 
the different types of stakeholders who are envisaged to make use of traceability (e.g. 
managers, developers, customers, auditors etc.). 

It should also be noted that the current level of tool support for traceability is one 
of the main reasons for its limited use in industrial settings. This is because most of 
the industrial tools and environments fail to provide support for all the types of 
artefacts that are constructed in the software development life-cycle, as well as all the 
types of traceability relations that may exist between these artefacts. Moreover, 
existing tools and environments do not interoperate with other tools, which are likely 
to be used in distributed and heterogeneous software development settings. Some 
research prototypes (e.g. EBT [ 10], and TraceM [ 55]) appear to address the 
interoperability problem. However, these tools do not adequately address the problem 
of automatic generation of traceability relations, and it is unclear whether they can 
achieve the data management effectiveness and robustness required in industrial 
settings. To this end, further research and development is required for delivering the 
right combination of capabilities. 

 
7. Conclusions  

 
In this article we have presented a roadmap of the research and practical work that 
has been developed to support software system traceability. To produce this roadmap, 
we have reviewed and presented: (a) different frameworks and classifications of 
traceability relations, (b) different approaches to the generation of traceability 
relations including manual, semi- automatic and automatic approaches, (c) different 
approaches to the representation, recording, and maintenance of traceability relations 
that underpin the architectural design and implementation of traceability tools and 
environments, and (d) different ways of deploying traceability relations in the 
software development process. Our review of the field has also identified issues that 
require further investigation by both the research and industrial communities which 
are also presented in the paper. 

Our view is that the establishment and effective deployment of software 
traceability is very significant in the software development life cycle, and that 
existing approaches have made significant contributions to various aspects of 
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traceability. However, it has to be appreciated that the provision of adequate support 
for traceability is not an easy task and given the current state of the art in this field it 
cannot be claimed that holistic and effective support for traceability is available. As 
we discussed in Section 6, there is still a significant number of issues of traceability 
which are open to further research and need to be addressed adequately before 
traceability can be widely adopted in industrial settings and benefit system 
development processes. 
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