
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/255654361

Software	Traceability:	A	Roadmap

Article	·	August	2005

DOI:	10.1142/9789812775245_0014

CITATIONS

127

READS

117

2	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

GREDIA	View	project

cybersure	View	project

George	Spanoudakis

City,	University	of	London

75	PUBLICATIONS			1,359	CITATIONS			

SEE	PROFILE

Andrea	Zisman

City,	University	of	London

46	PUBLICATIONS			941	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	George	Spanoudakis	on	17	September	2014.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/255654361_Software_Traceability_A_Roadmap?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/255654361_Software_Traceability_A_Roadmap?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/GREDIA?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/cybersure?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Spanoudakis?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Spanoudakis?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/City_University_of_London?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Spanoudakis?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea_Zisman?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea_Zisman?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/City_University_of_London?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrea_Zisman?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Spanoudakis?enrichId=rgreq-df2c0b86d2f57beb9dcd8e31ac6a13c1-XXX&enrichSource=Y292ZXJQYWdlOzI1NTY1NDM2MTtBUzoxNDI1MzgwNjUzMjE5ODRAMTQxMDk5NTEzMTQ5NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

SOFTWARE TRACEABILITY: A ROADMAP

GEORGE SPANOUDAKIS and ANDREA ZISMAN

Software Engineering Group,
Department of Computing, City University

Northampton Square, EC1V 0HB, UK
E-mail: {gespan | a.zisman} @ soi.city.ac.uk

Traceability of software artefacts has been recognised as an important factor
for supporting various activities in the software system development process.
In general, the objective of traceability is to improve the quality of software
systems. More specifically, traceability information can be used to support the
analysis of implications and integration of changes that occur software
systems; the maintenance and evolution of software systems; the reuse of
software system components by identifying and comparing requirements of
new and existing systems; the testing of software system components; and
system inspection, by indicating alternatives and compromises made during
development. Traceability enables system acceptance by allowing users to
better understand the system and contributes to clear and consistent system
documentation.

Over the last few years, the software and system engineering
communities have developed a large number of approaches and techniques to
address various aspects of traceability. Research into software traceability has
been mainly concerned with the study and definition of different types of
traceability relations; support for the generation of traceability relations;
development of architectures, tools, and environments for the representation
and maintenance of traceability relations; and empirical investigations into
organisational practices regarding the establishment and deployment of
traceability relations in the software development life cycle. However, despite
its importance and the work resulted from numerous years of research,
empirical studies of traceability needs and practices in industrial organisations
have indicated that traceability support is not always satisfactory. As a result,
traceability is rarely established in existing industrial settings.

In this article, we present a roadmap of research and practices related to
software traceability and identify issues that are still open for further research.
Our roadmap is organised according to the main topics that have been the
focus of software traceability research.

Keywords: Software traceability, traceability relations, representation and

 1

gspanoudakis
Text Box
This article appeared in the Handbook of Software Engineering and Knowledge Engineering,Vol. III: Recent Advancements, (ed) Chang S. K., World Scientific Publishing Co., ISBN 981-256-273-7 , 2005

maintenance of traceability, deployment of traceability, software development
process

1. Introduction

Software traceability – that is the ability to relate artefacts created during the
development of a software system to describe the system from different perspectives
and levels of abstraction with each other, the stakeholders that have contributed to the
creation of the artefacts, and the rationale that explains the form of the artefacts – has
been recognised as a significant factor for any phase of a software system
development and maintenance process [46], and contributes to the quality of the final
product.

Typically, traceability relations denote overlap, satisfiability, dependency,
evolution, generalisation/refinement, conflict and rationalisation associations
between various software artefacts [51] (e.g. requirement specifications, software
analysis, design, test models, source code), or contribution relations between
software artefacts (typically requirement specifications) and the stakeholders that
have contributed to their construction. Depending on whether traceability relations
associate elements of the same artefact or elements of different artefacts, they can be
distinguished into vertical and horizontal relations, respectively [36]. Another
distinction is concerned with the notion of pre-traceability and post-traceability
relations [26]. The former category includes relations between requirement
specifications and the sources that have given rise to these specifications, i.e. the
stakeholders that have expressed the views and needs which are reflected in them.
The latter category includes relations between requirement specifications and
artefacts that are created in subsequent stages of the software development life cycle.

Depending on their semantics, traceability relations present information that can
be used in different ways in the software development life cycle. For instance,
traceability relations may be used to support the assessment of the implications of
changes in a system and the effective execution and integration of such changes
during the development, maintenance, and evolution of a system. They may also be
used to support various types of analysis that can establish whether a system meets its
requirements (coverage and verification analysis), whether the requirements set for a
system are those intended for it (validation). Furthermore, they may facilitate: (a)
system testing by relating requirements with test models and indicating routes for
demonstrating product compliance; (b) system inspection by helping inspection teams
to identify alternatives and compromises made during development; and (c) system
acceptance by allowing users to understand and trust specific choices that have been
made about the design and implementation of a system. Finally, they may lead to the
reuse of system components when these components are related to requirements of
existing systems that are similar to requirements of new systems [13].

 2

Overall, as suggested by Lindval and Sandhal [36], the establishment of
traceability relations makes the documentation of a system clear and consistent, and
makes the process of maintaining the system less dependent on individual experts.

Many approaches have been proposed to support software traceability. Research
into software traceability has been particularly concerned with:
(a) the study and definition of different types of traceability relations [16, 19, 23, 27,

 31, 35, 36, 47, 50, 61];
(b) the provision of support for their generation [1, 4, 23, 44, 39, 40, 61];
(c) the development of architectures, tools and environments for the representation

and maintenance of traceability relations [10, 11, 55, 44], and
(d) empirical investigations of organisational practices regarding the establishment

and deployment of traceability relations during the software development life
cycle [5, 8, 26, 36, 49, 51, 62].
However, despite the wide recognition of its importance and numerous years of

research, effective traceability is still rarely established in contemporary industrial
settings [5, 51]. This phenomenon may be attributed to the difficulty in automating
the generation of traceability relations with clear and precise semantics that could,
adequately and cost-effectively, support the types of analysis necessary to deliver the
benefits of traceability outlined above. Typically, most of the existing approaches,
environments and tools assume either that traceability relations should be identified
manually (e.g. [10, 27, 47]), or offer traceability generation techniques which cannot
identify relations with a rich semantic meaning (e.g. [1, 4, 40]). In the former case,
the cost of identifying traceability relations manually clearly outweighs the expected
benefits of traceability and makes organisations reluctant to enforce them, unless
there is a regulatory reason for doing so. In the latter case, the lack of a clear and
precise semantics make the asserted relations of little use and do not provide the
benefits of using traceability as described above. Therefore, the relevant techniques
are not widely adopted in industrial settings.

In this paper, we present a roadmap into the state of the art and practice in
requirements traceability, discuss the main scientific and technological advances in
this area, present the possible ways of establishing traceability that are available by
current technology, and identify issues which require further research in this field. In
the course of producing this roadmap, we have tried to be as objective and inclusive
as possible. However, we may have not been entirely successful, as there is always a
potential for missing out existing work and presenting approaches and techniques
under the inevitable influence of personal perspectives and perceptions. To this end,
our roadmap should be read in a critical way.

The rest of this article is organised as follows. In Section 2, we discuss the main
types of traceability relations that have been proposed in the literature and suggest a
classification for these types. In Section 3, we present the main approaches and
techniques for generating traceability relations from manual, semi-automatic, and

 3

automatic perspectives. In Section 4, we outline the different approaches regarding
the representation and maintenance of traceability relations in software development
tools, and discuss the merit of each of these approaches. In Section 5, we discuss the
various ways of using traceability relations in software development and maintenance
settings, and present the implications that these ways have for other aspects of
traceability, including the semantics of the deployed relations and requirements for
their generation and maintenance. In Section 6, we present issues related to the
semantics, establishment, representation and deployment of traceability relations
which, in our view, are open to further research. Finally, in Section 7 we give a
summary of the main findings of our roadmap.

2. Types of Traceability Relations

Stakeholders with different perspectives, goals and interests who are involved in
software development may contribute to the capture and use of traceability
information. Depending on their perceptions and needs, they may influence the
selection of different types of traceability relations which are used in software
development projects, and can establish project specific conventions for interpreting
the meaning of such relations. As it has been suggested in [36] and [51], existing
approaches and tools for traceability support the representation of different types of
relations between system artefacts but the interpretation of the semantics associated
with a traceability relation depends on the stakeholders. Moreover, different
stakeholders are interested in different types of relations. For example, end users may
be interested in relations between requirements and design objects as a way of
identifying design components generated by or satisfying requirements; designers
may be interested in the same type of relations but as a way of identifying the
constraints represented as requirements associated with a certain design object.

These phenomena are acknowledged by Dick [19] who has also stated that
typically in industrial settings the semantics of traceability relations is very shallow
and it is necessary to represent deeper and richer semantic traceability relations.
Pinheiro and Goguen [44] have also asserted that traceability relations should have
precise semantic definition to avoid the problem of culture-based interpretations. On
the other hand, Bayer and Widen [6] suggested that in order to increase the use of
traceability and, therefore, compensate for its cost, traceability relations should have a
rich semantic meaning instead of being simple bi-directional referential relations.

In order to overcome the lack of standard semantic interpretations of traceability
relations and establish meaningful forms of semantics for traceability relations,
various researchers have proposed approaches, reference models, frameworks, and
classifications incorporating different types of traceability relations [2, 19, 26, 35, 36,
 40, 46, 51, 68, 78]. These classifications are based on different aspects of traceability.
For instance, some classifications are based on the types of the related artefacts [22,

 4

 36, 46, 78], others are based on the use of traceability information in supporting
different requirements management activities such as understanding, capture,
tracking, evolution, and verification [19, 27, 51], or on impact analysis [68].

In general, traceability relations can be classified as horizontal traceability or
vertical traceability relations [36]1. The former type includes relations between
different models, and the latter type includes relations between elements of the same
model. Another classification focusing on requirements (requirements traceability)
has been proposed in [46]. This classification includes 18 different types of
traceability relations organised in five different groups. These groups are: (a)
condition link group, which includes relations between requirements and restrictions
associated with them; (b) content link group, which includes relations that signify
comparisons, contradictions, and conflicts between requirements; (c) documentation
link group, which includes relations associating different types of software documents
to a requirement; (d) evolutionary link group, which includes replacement relations
between requirements (e.g. a requirement X has replaced a requirement Y in
requirements document); and (e) abstraction link group, which includes relations
representing abstractions like generalisation and refinement between requirements.

In this paper, we organise the various types of traceability relations proposed in
the literature into eight main groups namely: dependency, generalisation/refinement,
evolution, satisfaction, overlap, conflicting, rationalisation, and contribution
relations. These groups are described below. In our discussion about these groups, we
use the term element in a general way to represent the different parts, entities, and
objects in software artefacts that are traceable. Examples of these elements are
stakeholders, requirements statements, design components (e.g. classes, states), code
statements, test data, etc. It is worth noting that this classification is not orthogonal.
Thus, two elements e1 and e2, in different or in the same software artefact can be
related by more than one type of relations.

(a) Dependency relations – In this type of relations, an element e1 depends on an
element e2, if the existence of e1 relies on the existence of e2, or if changes in e2
have to be reflected in e1. In [51], the authors proposed the use of dependency
relations between different requirements, and between requirements and design
elements. In their framework, dependency relations can be used to support
requirements management, express dependency between system components for low-
end users, and track compositions and hierarchies of elements. An application of this
approach that supports the specification and evolution of workflow management
systems by using dependencies between business process objects, decision objects,
and workflow system objects has been proposed in [74]. Dependency relations are

1 In [9] the term "horizontal traceability" is defined as relations between models developed in one stage

of the system development life cycle (the same model type), while the term "vertical traceability" is
defined as relations between different models. However, in this paper we adopt the definition given in
[36]

 5

also suggested in [41] to support the management of variability in product and service
families. In [68, 69], von Knethen et al. suggested the use of dependency relations
between documentation entities (e.g. textual requirements, use cases) and logical
entities (e.g. function, tasks) to assist with fine-grained impact analysis. Other forms
of dependency relations are found in Spanoudakis and Zisman et al. [61, 78]. In this
approach, dependency relations are called requires-feature-in relations and associate
parts of use case specifications and customer requirements specifications. The
requires-feature-in relations denote that a certain part of a use case cannot be realised
without the existence of structural and functional features required by the
requirement, or that one requirement depends on the existence of a feature required
by another requirement. In Maletic et al. [39], dependency relations are called causal
conformance and are used between software documents to represent an implied
ordering in the production of the related documents (e.g., bug reports cannot be
produced before implementation report). In [27], dependency relations are called
developmental relations and are used to describe the logical structure of development
and provide tracing requirements through the artefacts generated during the other
phases of the software development life cycle. In the Software Information Base
(SIB), that is an approach for building software repositories to support software reuse
[14], dependency relations are realised as correspondence relations between
requirements, design, and code artefacts. Dependency relations have also been used
for requirements [2, 47], scenarios, code, and model elements [22], and to support the
design and implementation of product lines [53].

(b) Generalisation/Refinement relations – This type of relations is used to
identify how complex elements of a system can be broken down into components,
how elements of a system can be combined to form other elements, and how an
element can be refined by another element. In [46], these relations are classified as
abstraction links and represent abstractions between trace requirements. In the case
study developed in [51], generalisation abstractions are seen as a special type of
dependency relations. In [68, 69], Generalisation/Refinement relations are used to
represent logical entities at different levels of abstraction. Generalisation/refinement
relations are also used in the approach proposed in [74] to support associations
between business process, decision, and workflow system objects. In [27], they are
called containment relations and associate requirement artefacts that together form a
composite artefact. Other approaches that use generalisation/refinement relations are
[35, 41, 44, 50].

(c) Evolution relations – Relations of this type signify the evolution of elements
of software artefacts. In this case, an element e1 evolves_to an element e2, if e1 has
been replaced by e2 during the development, maintenance, or evolution of the system.
In [46], the authors suggested that this type of relations should be used to associate
requirements and use specialisations of this type called replace, based_on, formalize,
and elaborate relations. In 51], evolution relations specify process-related links that

 6

are used by high-end users to document the input-output relationship of actions
leading from existing elements to new (or modified) elements and, therefore, identify
the origins of the elements. In TOOR [44], evolution relations are called replace and
abandon relations. A replace relation is used to signify that a requirement has
changed. An abandon relation is used to signify that a requirement is unnecessary
(i.e., it has been discarded). In [39], evolution relations are called non-causal
conformance relations and are used to represent the fact that different documents, or
their parts, conform to each other without necessarily having clear causality between
them. An example of this case is related to the existence of multiple versions of the
same documents. In Gotel and Finkelstein [27], evolution relations are called
temporal relations and are used to associate requirement artefacts in order to
represent the history of their development. In the Remap project [50], evolution
relations between requirements are captured by using trace rules and are represented
in a knowledge base. Evolution relations are also present in SIB [14] to signify
derivations between requirements, design, and code artefacts.

(d) Satisfiability relations – In this type of relations, an element e1 satisfies an
element e2, if e1 meets the expectation, needs, and desires of e2; or if e1 complies
with a condition represented by e2. In [46], this type of relations is classified within
the condition link group, which associates restrictions to requirements and contains
constraints and pre-condition links. In [51], satisfiability relations have been
proposed as associations between requirements and system components (e.g. design
components) and are used to ensure that requirements are satisfied by a system. The
satisfaction relations are product-related links, i.e. they describe properties of
elements independent of how they were created. They are used to represent that
requirements are satisfied by the system and to relate one or more requirements,
design, implementation elements, and compliance verification procedures. In [2],
satisfiability relations are specified between use cases. In [19], in order to allow rich
traceability, two types of satisfiability relations have been proposed: (i) establishes
relation, a one-to-one relationship which represents links between main arguments of
a system and the requirements satisfying these arguments, and (ii) contributes
relation, a many-to-many relationship which represents links between arguments and
requirements that contribute to the satisfaction of the arguments. In TOOR [44],
requirements satisfiability is defined based on the notion of derivation and
refinement: (a) if a requirement r1 is satisfied, its derived requirement r2 should also
be satisfied; however, if a derived requirement r2 is satisfied, this does not mean that
r1 is also satisfied; (b) if a requirement r1 refines a requirement r2, then satisfying r2
implies on satisfying r1. CORE [17] tool also supports satisfiability relations between
design and requirements artefacts.

(e) Overlap relations – In this type of relations, an element e1 overlaps with an
element e2, if e1 and e2 refer to common features of a system or its domain. In [61,
 78], overlap relations are used between requirement statements, use cases, and

 7

analysis object models, while in 16 such relations are used between goal
specifications represented in i* models, use cases, and class diagrams. In the
classification given in [46], an overlap relation is a documentation link that relates
requirements with different types of documents such as test case, purpose, comment,
background information, and examples. In [68, 69], overlap relations are called
representation relations and represent relationships between document entities
representing the same logical entity. The approach proposed in [22, 23] uses overlap
relations between scenarios specifications and other model elements such as data
flow, class, and use case diagrams. In PuLSE-BC (Product Line Software
Engineering Baselining and Customisation [6, 7]), potential traceability relations are
defined based on overlaps of models that are identified based on name matching. The
overlap relations between source code and requirements or manual documents
proposed in [4] and [40] are identified using probabilistic and vector space IR
techniques. In [27] overlap relations are called adopts relations (a subtype of
connectivity relation) and are used to associate requirement artefacts.

(f) Conflict relations – This type of relations signifies conflicts between two
elements e1 and e2 (e.g., when two requirements conflict with each other). Conflict
relations have been proposed in [2, 46, 51, 73, 79]. In [51], conflict relations are used
to signify conflicts between requirements, components, and design elements, to
define issues related to these elements, and to provide information that can help in
resolving the conflicts and issues. This information is recorded by using specialised
conflict resolution relations, namely based_on, affect, resolve, and generate relations
between requirements artefacts and the rationale, decisions, alternatives, and
assumptions associated with them. In [46], conflict relations are classified in the
content link group. In [32, 79], conflicts are represented by inconsistency relations
between requirements and design artefacts and are identified by using a goal-based
approach. In this approach, inconsistency relations are established when similar goals
cannot be achieved in two different specifications, or in parts of the same
specification. Inconsistency relations between design artefacts are also used in [76].

(g) Rationalisation relations – Relations of this type are used to represent and
maintain the rationale behind the creation and evolution of elements, and decisions
about the system at different levels of detail. In [51], rationalisation relations are
captured based on the history of actions of how elements are created. In [35],
rationalisation relations are expressed between traceable specifications (a software
specification with different level of granularity such as document, model, diagram,
use case, etc.) and a rationale specification (a document containing assumptions or
alternatives to a traceable specification). Remap [50] also captures design rationale
and represent them in a knowledge base. Rationalisation relations are also found in
[46] and [54].

(h) Contribution relations – Relations of this type are used to represent
associations between requirement artefacts and stakeholders that have contributed to

 8

the generation of the requirements. Contribution relations were initially proposed by
Gotel and Finkelstein [27] to support requirements pre-traceability. Pre-traceability is
the ability to relate a requirement (called "contribution") with the stakeholders that
expressed it and/or contributed to its specification (called "contributors"). Their
approach identifies three different types of contributors: (a) principals who motivate
the production of artefacts are committed to what is expressed in the artefacts, and are
responsible for the consequences of the artefacts for the system; (b) authors, who
choose, formulate, and organise the content and structure of the information in the
artefacts; and (c) documentors, who capture, record, or transcribe the information in
the artefact.

Table 1 presents a summary of the various approaches for the different types of
traceability relations that have been proposed in the literature and the types of the
software artefacts that these types may interrelate. We also represent associations
between the different types of artefacts and stakeholders. In this table, software
artefacts, or their parts, are distinguished depending on the phase of the software
development life cycle that they are created in. More specifically, we classify
artefacts as: (a) requirements, (b) design, (c) code, and (d) others (e.g. goal
documentation, test cases, rationale and purpose documentation, etc). The columns of
the table represent the eight different types of traceability relations discussed above,
the rows represent combinations of different types of software artefacts, and the cells
indicate the approaches that realise (in some form) the specific type of relation
between the relevant types of artefacts. Empty cells in the table signify combinations
of traceability relation and artefact types which, to the best of our knowledge, are not
realised by any of the approaches that have been proposed in the literature.

From Table 1, it is clear that most of the existing approaches have proposed
different types of traceability relations that relate requirements specifications [2, 6,
 14, 19, 22, 27, 35, 41, 44, 47, 50, 51, 69, 78], and requirements with design
specifications [14, 16, 17, 22, 35, 50, 51]. Some approaches have proposed
traceability relations between code specifications and requirements and design
artefacts [4, 22, 39, 51]. We attribute this to the fact that traceability was initially
proposed to describe and follow the life of a requirement (i.e. requirements
traceability [27]). In addition, the establishment of traceability relations involving
code specifications and other software artefacts is not an easy task. It should also be
noted that very few approaches support conflict [2, 32, 47, 51, 73, 79] and
rationalisation relations [35, 50] despite the importance of these types of relations. In
addition, only one approach has focused on contribution relations between
stakeholders and requirements [27] despite the fact that contribution relations are
important to establish the source of the requirement and to identify stakeholders that
should be consulted in the case of changes to these requirements.

The different types of traceability relations that have been proposed in the
literature and the lack of a commonly agreed standard semantics for all these types do

 9

not provide confidence in the use of traceability techniques and do not facilitate the
establishment of a common framework to allow the development of tools and
techniques to support automatic (or semi-automatic) generation of these relations. In
our view, the establishment of standardised definitions for different types of
traceability relations are necessary to: (a) assess the accuracy of established relations
of these types in specific projects, and (b) develop tools and techniques to support the
generation, maintenance and deployment of such relations.

Table 1: Summary of the different types of traceability relations for different artefacts

generated during various phases of the software development life cycle

 Rel. Type

Artefacts

Dependency

Generalisation

Refinement

Evolution

Satisfiability

Overlap

Conflict

Rationalisation

Contribution

Stakeholders -

Requirements

 Gotel

et al [27]

Stakeholders -

Design

Stakeholders -

Code

Stakeholders -

Other

Requirements -

Requirements

Alexander

[2]

Gotel

et al [27]

Pro-Art [47]

Ramesh

et al [51]

Von

Knethen

et al [69]

Rule-based

tracer

[78]

Gotel

et al [27]

Letelier [35]

Mohan

et al [41]

TOOR [44]

Remap [50]

Pro-Art [47]

Von Knethen

et al [69]

SIB [14]

Gotel

et al [27]

TOOR

[44]

Remap

[50]

Pro-Art

[47]

Alexander

[2]

Dick [19]

TOOR [44]

Pro-Art [47]

Bayer et al

[6]

Egyed

[22]

Gotel

et al [27]

Rule-

based

tracer

[61, 78]

Alexander

[2]

Pro-Art

[47]

Ramesh

et al [51]

Letelier [35]

Remap [50]

Requirements-

Design

SIB [14]

Egyed [22]

Ramesh

et al [51]

Letelier [35]

Remap [50]

Remap

[50]

Ramesh et al

[51]

CORE [17]

Cysneiros

et al [16]

Egyed

[22]

Kozle-

nkov &

Zisman

[32]

Ramesh

et al [51]

Letelier [35]

Remap [50]

Requirements-

Code

Egyed [22]

Maletic

 Maletic et

al [39]

Ramesh et al

[51]

Antoniol

[4]

 10

et al [39]

Requirements-

Other

 Letelier [35]

Mohan

et al [41]

TOOR [44]

 Dick [19]

Ramesh

et al [51]

TOOR [44]

Cysneiros

et al [16]

Pro-Art

[47]

Ramesh

et al [51]

Letelier [35]

Design -

Design

Egyed [22],

Von

Knethen

et al [69]

Von Knethen

et al [69]

 Ramesh

et al [51]

 Xlinkit

[73]

Zisman

et al [79]

Ramesh

et al [51]

Design -

Code

SIB [14]

Egyed [22],

Maletic

et al [39]

Letelier [35] SIB [14]

Maletic

et al [39]

Ramesh

et al [51]

 Letelier [35]

Design -

Other

 Letelier [35] Ramesh

et al [51]

 Ramesh

et al [51]

Letelier [35]

Code -

Code

 Ramesh

et al [51]

Code -

Other

Maletic

et al [39]

 Maletic

et al [39]

Ramesh

et al

[51]

Other -

Other

Xu

et al [74]

Letelier [35]

Xu et al [74]

 Ramesh

et al [51]

Rule-

based

tracer

[78]

 Letelier [35]

As described in the beginning of this section, reference models have also been
proposed to support semantic interpretation of traceability relations. Ramesh et al.
[51] have proposed the use of metamodels to support the representation of traceability
information including types of different traceable elements and types of relations that
may exist between these elements. The metamodel that they have proposed for this
purpose is composed of entities and relationships that can be specialised and
instantiated to represent traceability models used in specific organisations or projects.
More specifically, their metamodel contains three types of entities. These are: (i)
object entities, that signify the conceptual elements which may be related by
traceability relations (e.g. requirements, assumptions, designs, rationale, system
components, etc); (ii) stakeholder entities, that represent the agents involved in the
system development and maintenance (e.g. project managers, system analysts
designers, etc); and (iii) source entities, that represent the documentation of
traceability information (e.g. requirements specifications, meeting minutes, designed

 11

documents, etc). The relationships in their metamodel associate object instances
through TRACES-TO links, stakeholders and source instances through MANAGES
links, source and objects instances through DOCUMENTS links, and stakeholders and
objects or stakeholders and traceability links through HAS-ROLES-IN links. These
relationships can be specialised depending on the application or the views of the
stakeholders.

Applications and extensions of the traceability model and traceability links
suggested in [51] have been proposed to assist in the specification and evolution of
workflow management systems [68], identify common and variable requirements in
product and service families [41], and assist software development process based on
UML [35]. Another metamodel that supports capture of design rationale has been
proposed in [50].

With regards to support for different types of traceability relations, the study
reported in [51] shows that many CASE tools do not support the identification of
satisfiability relations. This is due to the difficulty in automating the specifications of
relations that can be identified based on existing relations (e.g. by transitivity) and
deficiency in representing satisfying requirements as well as the degree of
satisfaction. Dependency relations are also minimally supported by traceability tools
and there is lack of precise characterisation of dependency types and the strength of
the relevant relations. On the other hand, software configuration management tools
provide ways of representing and enacting evolution of coarse-grained artefacts, as
well as notifying the users about changes. However, traceability tools only manage
fine-grained objects. The study has also demonstrated that even experienced
traceability users find difficult to capture complex traceability information. The
authors suggested that it is necessary to develop abstraction mechanisms to support
different granularity and sophistication when performing traceability, inference
services to support semantics of traceability link types and access to large amount of
traceability information, formal and informal trace description, and mechanisms to
define and enact model driven trace process.

3. Generation of Traceability

The majority of contemporary requirements engineering and traceability tools offer
only limited support for traceability as they require users to create traceability
relations manually. The manual creation of traceability is expected in numerous
techniques and approaches including [1, 2, 5, 6, 19, 27 44, 47] and tools (e.g. CORE
[17], DOORS [64], PuLSE-BC [6], RDT [52], RTM [30], RETH [31]). As the
manual creation of traceability relations is difficult, error-prone, time consuming and
complex, despite the advantages that can be gained, effective traceability is rarely
established manually unless there is a regulatory reason for doing so. To alleviate this
problem, some approaches which support automatic or semi-automatic generation of

 12

traceability relations have been proposed (see [4, 12, 22, 29, 34, 40, 44, 47, 50, 61,
 78]).

In the following, we describe the different approaches to the generation of
traceability relations, grouped according to the level of automation that they offer.
This level ranges from manual, to semi-automatic, and fully automatic generation.
We also compare these approaches with respect to the level of effort that they require
in establishing the traceability relations, the complexity of their use, the maturity of
their development, and the precision of the relations that they can generate.

3.1 Manual generation of traceability relations

In this group of approaches, manual declaration of traceability relations is normally
supported by visualisation and display tool components, in which the documents to be
traced are displayed and the users can identify the elements in the documents to be
related in an easier way. Examples of this situation occur in tools like RETH [31],
DOORS [64], RTM [30], RDT [52], and extensions of DOORS such as [2, 19]. The
majority of these approaches claim to support (semi-)automatic traceability
generation, since the relationships are identified manually, but the links between the
elements being related are automatically generated by the supporting tool based on
these relationships. However, in our opinion, these approaches are considered
manual, as they expect the user to identify and mark the elements to be traced. In
addition, some of these tools provide no support for defining the semantics of
traceability relations in a declarative and enforceable axiomatic form (e.g. RETH
[31], DOORS [64] and RTM [30]).

The approach in [1, 2] has been implemented on top of the requirements
management tool DOORS [64] to allow generation and organisation of traces into
groups such as use cases and requirements, instead of having traces belonging only to
atomic objects (individual requirements). Here traceability hyperlinks are created
based on the manual specification of satisfiability, dependency, and conflict relations
(see Section 2) between use cases and requirements, and fuzzy matching between use
case names and references. The relationships are specified by the use of a special-
purpose screen in which the users relate the names and object identifiers of groups of
use cases and requirements. The HTML hyperlinks are constructed by the tool and
can be visualised and navigated by using a web browser. The rich traceability
approach proposed in [19] has also been implemented on top of DOORS [64]. It uses
a rich traceability explorer tool to support visualisation of the objects being traced and
the traceability links.

In [27], the contribution relations (see Section 2) are manually defined in the
artefacts, in an interactive way, and represented as hypertext mark-ups using the
Standard Generalized Markup Language (SGML). A prototype tool has been
developed to support visualising and querying the artefacts stored in an online

 13

repository, agents, and relations; interactive definitions of traceability relations and
agent details; and inference of agent capacities, social roles and commitments based
on pre-defined rules.

The approach in [6] (PuLSE-BC) is still theoretical and tools to support
automatic generation of potential traces between product family metamodels (e.g.
views, models, and life cycle stages such as scoping, architectural, and
implementation), based on name matching, have not yet been implemented.

Although the approaches in [2] and [19] provide the users with advanced support
for visualising and navigating through the generated traceability relations, the effort
to establish these relations is still high, especially when dealing with large and
complex artefacts. The correctness of the traceability relations generated in [1] and
[2] relies on understanding the semantics of the relations by the users who identify
them. And as this understanding can differ between the users involved in the process,
different interpretations and inconsistencies may arise when referring to the relations.

3.2 Semi-automatic generation of traceability relations

In order to overcome the issues associated with the manual generation of traceability
relations, some approaches have been proposed in which traceability relations are
generated in a semi-automatic way. We organise the semi-automatic traceability
generation approaches into two groups: (a) pre-defined link group, that is concerned
with the approaches in which traceability relations are generated based on some
previous user-defined links [11, 12, 22, 23], and (b) process-driven group, that is
concerned with the approaches in which traceability relations are generated as a result
of the software development process [46, 47].

An example of a pre-defined link group approach has been proposed by Egyed
and Gruenbacher [22, 23]. Egyed and Gruenbacher suggest the use of a rule-based
scenario-driven approach to support the generation and validation oftrace
dependencies between scenarios, code, and model elements such as data flow, class,
and use case diagrams. In this approach, traceability dependencies are generated and
validated based on observed scenarios of the software system being developed, and
on manually defined hypothesised traces, that link artefacts with these scenarios.
Manually detected overlaps between scenarios and model elements of the system are
represented as a footprint graph, which is normalised and refined. This footprint
graph is used to support automatic generation and validation of new traceability links
between model elements, model elements and code, and model elements and
scenarios based on rules. The new trace dependencies are derived based on: (a)
transitive reasoning (i.e., if A depends on B and B depends on C, then A depends on
C); and (b) share used of common ground (code) (i.e., the use of the criterion that if A
and B depend on subsets of a common ground and these subsets overlap, then A
depends on B). This approach has been validated on a library loan system and on a

 14

video-on-demand system [23].
In [11, 12], Cleland-Huang et al. proposed an event-based approach to support

generation of traceability links between requirements and performance models [12],
and between non-functional requirements and design and code artefacts [11]. Similar
to [22], in their approach fine-grained traceability links are dynamically generated
during system maintenance and refinement based on user-defined links. These user-
defined links are specified during inception, elaboration, and construction of the
system. Their event-based technique supports dynamic trace generation based on
invariant rules of design patterns which are used to identify critical components of
classes.

PRO-ART [47] is an example of a process-driven approach in which traceability
relations are generated as a result of creating, deleting, and modifying a product by
using development tools (process execution environment). The development tools
must ensure: (a) the recording of execution, input and output of each action related to
the creation, deletion, and modification of a product in a trace repository, (b)
generation of dependency links between two dependent objects, and (c) recording of
the stakeholder performing the action and relationships between the action being
executed and previous actions.

Although the above approaches may be considered an improvement when
compared with the manual approaches, the identification of the initial user-defined
links required by some of the approaches may still cause traceability to be error-
prone, time consuming, and expensive. In addition, the tools that have been
developed to support these approaches [12, 22] are prototypes implemented to
illustrate and evaluate the approaches and not to be used in large-scale industrial
settings. In the case of the process-driven approach, the generated traceability
relations are dependent on the way that the system is developed.

3.3 Automatic generation of traceability relations

Recently, there have been proposals of approaches to support automatic generation of
traceability relations. Some of these approaches use information retrieval (IR)
techniques [4, 29, 40], others use traceability rules [50, 61, 78], special integrators
[55], and inference axioms [45].

The use of information retrieval techniques to support generation of traceability
relations has been proposed in [4, 29, 40]. In [4], a traceability relation is established
between a requirement document and source code component, if the document
matches a query specified as a list of identifiers extracted from the source code.
Depending on the similarity between queries and documents, a ranked list of
documents for each source code component is produced. Queries are matched with
documents using probabilistic and vector space IR techniques. This approach is based
on the assumption that the vocabulary of the source code identifier overlaps with

 15

various items of the requirements documents due to the fact that programmers
normally choose names for their program items from the application-domain
knowledge. This work has been reported to produce traceability relations at low
levels of precision and reasonable levels of recall. It should be noted, however, that
the relations produced by this approach can only represent overlap relations between
elements in different system artefacts that refer to common features of a system.

Another approach that automates the generation of traceability relations using
vector space IR techniques has been proposed in [29]. This approach attempts to
reduce the number of missed and irrelevant traceability relations by using a classical
vector IR model technique, and a classical vector IR model technique extended with
the use of key-phrase lists or the use of thesauruses. The study has demonstrated that
the use of a key-phrase list can improve the recall of the generated relations (fewer
missed relations), but decreases their precision (i.e., it generates more irrelevant
relations) when compared to classical vector IR techniques. It has also demonstrated
that the use of a thesaurus outperforms in terms of recall and, sometimes, also in
terms of precision the use of key-phrases.

The approach proposed in [39] is based on the use of Latent Semantic Indexing
(LSI) to generate traceability links between system documentation (e.g., manual,
requirements, design or test suites) and source code. This approach does not depend
on the specification language used to produce the documentation of a system and the
programming language used in the source code. It takes into consideration synonym
terms since it uses linear combinations of terms as dimensions of the representation
space. In this approach, a corpus is built based on pre-processing of the documents
and source code. A traceability link between two documents is established when the
semantic similarity measure of these documents is greater than a threshold. A
comparison of this work with the work in [4] demonstrates that both recall and
precision results are better in [40].

In the rule-base tracer proposed in [61, 77, 78], traceability relations between
requirements statements, use cases, and analysis object models are automatically
generated by using XML-based traceability rules. The rules are used to identify
syntactically related terms in the requirements and use case documents with
semantically related terms in an object model. The documents to be traced are
represented in XML and the generated relations are represented as hyperlinks and
expressed as an extension of Xlink [18]. The approach has been evaluated in case
studies for a family of software-intensive TV systems and for a university course
management system. The levels of recall and precision achieved by this approach in
the reported case studies are promising: recall and precision measures range between
50% and 95%. These results provide evidence of the ability of the approach to
support automatic generation of traceability relations.

Another approach that supports the automatic generation of traceability relations
between requirements and design artefacts based on trace rules has been proposed in

 16

the Remap project [50]. This approach also supports arbitrary chaining of rules in
which the conclusion part of a rule can become part of the condition part of another
rule. The generated traceability information is maintained in a knowledge base and
may be used for further reasoning. An extension of Remap that allows the
identification of commonality and variability traceability management in the
development of e-service families (e.g. Internet, wireless and land-based
telecommunication systems) between customer requirements and design artefacts has
been proposed in [41].

In [55], Sherba et al. have proposed an approach that allows the generation of
new traceability relations based on relationship chaining. This approach uses special
integrators, which can discover and create traceability relations between software
artefacts and other previously defined relations. The new identified relations can be
generated based on indirect and transitivity dependencies, complex dependencies
containing more than one source or destination elements being related (anchors),
intersection of anchors, or matching of pre-defined conditions between artefacts
and/or relations. When more than one chaining option is available for certain
documents, the user has to choose a specific chain of relation type. At the time of
writing of this paper, this approach was still in early stage of its development and no
prototype tool was implemented.

In TOOR [44], traceability relations are defined and derived in terms of axioms.
Based on these axioms, the tool allows automatic identification of traceability
relations between requirements, design, and code specifications. TOOR also supports
derivation of additional relations from the axiomatic definitions by transitivity,
reflexivity, symmetry, extraction, and dependency. In addition, it allows users to
define traceability relations manually.

It has to be appreciated that, although none of the above approaches can fully
automate the generation of traceability relations, they have taken significant steps
towards this direction. However, the achievement of acceptable levels of recall and
precision that would increase the trustworthiness of the generated links is still
missing. At the moment, there is no consensus of what could be considered as
satisfactory recall and precision rates in industrial settings.

Also, existing approaches do not always deliver the relations that they can
generate at adequate performance levels (see Section 6). It is also important to note
that the majority of the developed approaches (e.g. [4, 29, 40]) have been
implemented only as prototype tools and, therefore, they have not achieved a level of
maturity required for large-scale use.

The approaches described in [44] and [61] are easy to use once a complete set of
traceability relation generation rules and axioms have been identified. This, however,
is not always easy. As a way of addressing this problem, in [58] the authors have
proposed a machine learning algorithm, which generates new traceability rules, based
on examples of undetected traceability relations identified by the users.

 17

4. Representation, Recording and Maintenance of Traceability Relations

The representation, recording and maintenance of traceability relations in different
tools and environments are supported by a wide range of architectural approaches.
These approaches can be distinguished into five main types, depending on the level of
integration that they assume between the artefacts and traceability relations, and the
representation framework that they use to store the artefacts and relations. These
approaches are:
(a) the single centralised database approach;
(b) the software repository approach;
(c) the hypermedia approach;
(d) the mark-up approach; and
(e) the event-based approach

The main characteristics of each of these approaches and their merit in
supporting traceability are discussed in the following. We also give examples of
requirements management, CASE and traceability tools, and environments that
realise each of the above approaches along with brief overviews of the ways in which
they do it.

4.1 Single centralised database approach

In this approach, both the artefacts and the traceability relations that can be created
between them are stored in a centralised database, which typically underpins the tool
that is used to maintain the traceability relations. Most of the industrial requirement
management tools that support traceability advocate this approach (e.g. DOORS [64],
RTM [30]). Typically, these tools store the traceability relations between artefacts in
an underlying relational database [51]. However, there are also tools based on object-
oriented (e.g. TOOR [44]) or proprietary database technology.

The main benefit of using an underlying database is that the processing of the
recorded relations can be based on extensive and efficient querying facilities that are
available from this database. It has, however, to be appreciated that this approach
makes it difficult to record and maintain traceability relations between artefacts which
are not generated by the tool that manages the relations. To alleviate the problem of
recording, some of the tools provide artefact importing and exporting capabilities
(e.g. [30, 64]). Such facilities give some degree of flexibility, but are normally
available only for artefacts created by other tools of the same vendor or by tools
which operate on a common artefact representation framework (DOORS [64], for
instance, provides import and export capabilities for artefacts which are constructed
and managed by most of the popular CASE tools). It should be noted, however, that
import and export facilities cannot support the effective maintenance of traceability

 18

relations between evolving artefacts, which are maintained by separate tools.
Furthermore, it has to be appreciated that, depending on the type of the

underlying database, this approach may make it difficult to differentiate between
different types of traceability relations. In tools which use relational or proprietary
databases, for instance, it is difficult to define different types of relations and specify
constraints for monitoring the integrity of the generated relations.

4.2 Software repositories

A second approach is to record traceability relations in a centralised software
repository along with the artefacts that they relate [14, 46]. The main difference of
this approach with the single database approach is that software repositories provide
sufficient flexibility for defining schemas for storing a wide range of software
artefacts and traceability relations between them. In addition, software repositories
provide application programming interfaces (APIs) which implement data definition,
querying, and management facilities that may be used to link them in client-server
architectures with other tools which are used to construct the involved software
artefacts.

The Software Information Base (SIB) [14] is an experimental repository system
that can support the definition of complex semantic structures for holding information
about artefacts and traceability relations at an infinite number of classification layers
based on the data model of the conceptual modelling language TELOS. SIB defines
traceability relation types that correspond to what in this paper has been termed as
dependency and evolution relations. It also allows the definition of arbitrary
additional types of traceability relations, and provides an API through which it may
be connected as an information server to external tools.

PRO-ART [47] is a process centred requirements engineering environment which
also advocates the software repository approach. PRO-ART assumes a process
centred integration of tools that are used to create and maintain the involved software
artefacts. More specifically, PRO-ART assumes the explicit specification of
processes, which can create the involved artefacts. These processes are defined in
terms of artefact creation, deletion, and modification actions. These actions are
realised by different tools operating on the top of the underlying PRO-ART
repository. Traceability relations in this environment are recorded as a by-product of
executing such actions on the artefacts that they are meant to relate. For example,
when a developer creates a textual rationale for an object class, PRO-ART
automatically creates a rationalisation relation between the class and the textual
annotation. In PRO-ART, the text providing the rationale may be created by text
editor that is different from the tool that was used to create the related class.
However, by virtue of monitoring the enactment of an underlying process model,
PRO-ART is able to identify the purpose of invoking the text editor and create the

 19

relevant rationalisation relation. The main benefit of this process-centric approach is
that it allows the definition of ways of capturing traceability relations as part of
software development processes and, thus, it can monitor or enforce the systematic
capture of such relations (this need has been suggested by case studies − see [20] for
example).

Overall, the software repository approach requires a heavy up-front tool
integration effort to support traceability that may not be desirable, or feasible, in
distributed software development settings. Furthermore, in realisations of this
approach along the lines suggested by PRO-ART, additional effort is required for
modelling the processes supported by the individual tools and their co-ordination of
these processes in the context of a software development life-cycle model.

4.3 The hypermedia approach

To solve the problem of maintaining traceability relations as the artefacts that they
associate evolve without having to integrate the relevant tools around a software
repository, some tools advocate an approach based on open hypermedia architectures
[71].

Sherba et al [55] have developed a traceability management, called TraceM that
realises this approach. TraceM is a research prototype system at an experimental
development stage, which supports the recording, maintenance, and traversal of
relations between software artefacts that are constructed by heterogeneous tools.
TraceM stores traceability relations separately from the artefacts that they associate.
A traceability relation in this system can be defined as an n-ary association between
artefacts of different types, or their parts, by using metadata. These metadata specify:
(i) the types of the artefacts associated by a relation, (ii) the external tools that create
these artefacts, (iii) transformers that can be used to transform artefacts into the
common representation framework of TraceM, and (iv) integrators which can be used
to automatically discover and create the traceability relations. Metadata are also used
to specify the types of stakeholders which may be interested in different types of
traceability relations and the stages in a project when these relations are needed.
Using a scheduling service that is provided by the system, developers can also specify
the conditions for invoking artefact translators (e.g., a translator may be invoked any
time when a new version of an artefact is created) and integrators. To take full
advantage of its services (e.g. to navigate between artefacts using recorded
traceability relations), developers have to integrate the external tools that are used for
creating artefacts with TraceM. This integration is possible using standard techniques
available in open hypermedia environments. In cases of artefacts which are created by
non integrated external tools, developers may use TraceM to record and view
relations.

 20

4.4 The mark-up approach

To enable traceability in widely distributed and heterogeneous software engineering
settings, some systems advocate the use of representations of traceability relations
using mark-up languages and store these relations separately from the artefacts that
they associate.

Gotel and Finkelstein [27], have developed a toolkit that can be used to create
and maintain contribution relations. This toolkit uses a combination of HTML and
descriptive mark up representations to store different types of contribution relations
between artefacts as hyperlinks (i.e. relations with hypertext trace anchors that can
provide the required navigational capabilities). Maletic et al. [39] have also developed
a tool in which traceability relations are stored as "hyperlinks" of different types.
These types specify the arity, directionality, and traversability of the relations.

STAR-Track [56] is a web-based requirements tracing tool that uses tagging
mechanisms to represent traceability relations. The tags in STAR-Track can represent
document elements or relations between these elements. Each tag is composed of a
document identifier and a title. The tagging method used in this approach is quite
simple: users can either have the different sections in a document used as tags or
define their own tags. The relations are denoted by the tag identifiers of the document
elements related by them.

In the rule-based tracer described in [61, 78], both traceability relations and the
artefacts that they relate are represented in XML. Traceability relations, however, are
recorded separately from the artefacts they relate, and XLink elements [18] are used to
indicate the parts of the artefacts these relations refer to. This system also
incorporates translators that can transform textual artefacts from their original format
into XML, and supports standardised XML representations for other types of models
(e.g. XMI for object models). The rule-based tracer does not require any form of tool
integration and, at its current state of development, provides only primitive support
for maintaining traceability relations when artefacts are modified. In such cases, the
modified artefacts have to be re-translated into XML and the tool embarks in a full
rule-based analysis of their contents to identify the traceability relations, which
remain valid or emerge after the changes.

4.5 The event-based approach

Except from the centralised software repository approach, in all other approaches
explained above, it is difficult to ensure that traceability relations between artefacts
will always be updated after modifications of these artefacts.

As a solution to this problem, Cleland-Huang et al. [10] have developed an
event-based traceability (EBT) server for recording and maintaining traceability
relations between requirements documents and other software artefacts. This system

 21

is based on an event-notification mechanism that implements the observer pattern
[25]. More specifically, the requirement documents can register their dependencies to
other artefacts using the registry of the system. Following the registration of
dependencies, their system monitors the artefacts and when any of them is modified,
it notifies all the dependent requirements about the change. The requirement
documents have responsibility for updating their contents if necessary. This system
can be used for maintaining dependency relations once they are identified. However,
it provides no support for identifying them.

In terms of their support for interoperability, the event-based and mark-up
approaches appear to be superior to centralised database and the software repository
approach. The latter, however, appear to be stronger in terms of performance and
offer better data management facilities.

5. Deployment of Traceability

Traceability relations may be deployed in the development life cycle of a software
system to support different development and maintenance activities, including:
 change impact analysis and management [12];
 system verification, validation, testing and standards compliance analysis [51];
 the reuse of software artefacts [69]; and
 software artefacts understanding [4, 40, 50, 51].

In the following, we overview ways in which traceability may support the above
forms of analysis and discuss the main types of relations that can be used in these
forms. We also discuss factors than can promote or prohibit the use of traceability in
industrial settings as reported by relevant case studies [5, 49, 51].

5.1 Traceability for change impact analysis and change management

One of the primary drivers for establishing and maintaining traceability relations
between different artefacts developed to document and implement software systems is
the ability to use these relations during the entire life-cycle of a system in order to: (a)
establish the impact that potential changes in some part of the system may have in
other parts (i.e., change impact analysis), and (b) make decisions about whether or
not such changes should be introduced, and with what priority (i.e., change
management).

The simplest form of analysing the impact of a change in a given artefact (e.g. a
requirement statement) is the identification of all the other artefacts that will be
affected by the change (e.g. design artefacts and code). Primitive change impact
analysis requires the provision of basic querying facilities to retrieve traceability
relations of specific types that may also have specific values for the properties
defined for these types. Most of the existing traceability tools and environments

 22

provide such querying facilities.
However, more complex forms of change impact analysis may also be desired in

different settings. Examples of these forms are: (a) the classification of affected
artefacts into different groups subject to the exact effect that the change will have on
them, (b) the identification of side-effects that the change may have, and (c) the
estimation of the cost of propagating the change. The delivery of such capabilities
requires support for the composition of different traceability relations into trace-
paths. These trace-paths can demonstrate how impact is propagated across artefacts
that are not directly related. Compositions of traceability relations may be established
by evaluating regular expressions [44], deductive rules [51], or traceability rules
[61]. Some research prototypes provide such composition capabilities (e.g. TOOR
[44], PRO-ART [47], and the rule-based tracer [61]). Most of the industrial
traceability tools, however, can realise these capabilities only through the generation
of appropriate scripts that can compute the required compositions. Support for the
estimation of the cost of executing and integrating requested changes is provided at
an inferior level. This is because the few cost estimation models (see [33] for
example) that have been developed for this purpose cannot provide very precise cost
predictions.

In certain cases, the assessment of the impact of a change may also require the
execution of a simulation model to demonstrate the potential effects of the change.
This kind of analysis requires not only the establishment of specific types of
traceability relations between the artefacts to be changed and the simulation model
that can demonstrate the effects of the change, but also the ability to propagate
changed values across these relations, to inject changed values into the simulation
model, and to execute the change. The EBT system [10] offers such capabilities and
has been used to analyse the effect of requirement changes onto the performance of
software systems by using dependency relations between requirements and
performance simulation models [12].

Clearly, the accuracy of both simple and complex forms of impact analysis
depends on the semantics, granularity and accuracy of the traceability relations,
which are taken into account. Relations that are established by virtue of identifying
references to common entities in different software artefacts may provide some
evidence that a change could potentially have an impact on an artefact, but cannot
establish this impact, or its nature, with certainty. Examples are the overlap relations
between requirements and object-oriented analysis models identified in [61, 78], or
between source code artefacts and manual pages or requirements identified by
information retrieval techniques in [4, 40]. On the other hand, traceability
relationships with a rich semantic content (e.g. the dependency relations in [51] or the
requires_execution_of relations in [61]) can lead to more accurate impact analysis
results.

The necessity of having traceability relations with rich semantics in order to be

 23

able to perform accurate impact analysis has been clearly identified by empirical
studies [8, 36]. Empirical research has also indicated that the accuracy of impact
predictions depends on the granularity of the entities, which are associated by
traceability relations. As reported in [8], fine-grain relations that associate specific
entities/parts within broad models and documentation result in more accurate results.
Industrial case studies have also indicated that software developers are often reluctant
to rely on traceability relations that have been produced automatically due to doubts
about the correctness of such relations [36].

5.2 Traceability for software validation, verification, testing and standards

compliance

Depending on their semantics, traceability relations can provide the basis for
performing different types of analysis in order to ensure that a system implements the
requirements desired by the stakeholders involved in its development (validation),
verify that it satisfies certain properties and its specification (verification), test its
individual components and the system as a whole, and assess its compliance with
respect to existing standards.

Pre-traceability contribution relations, for instance, may be used to identify
stakeholders and involve them in requirement validation activities [27]. The ability to
verify the satisfaction of the specification of a system and its required properties also
depends on the existence of traceability relations with appropriate semantics.
Preliminary system verification, for instance, can be performed by consulting and/or
composing refinement, dependency and satisfiability relations to establish whether all
the requirements of a system have been allocated to specific design and/or source
code components [42] and [69]). Similarly, traceability relations may be used to
check the existence of appropriate test cases for verifying different requirements and
to retrieve such cases for further testing. The results of this preliminary verification
analysis typically provide input to software inspection and auditing procedures [69].
They can also be correlated with the results of other forms of analysis, which may be
carried out as part of inspection and auditing procedures (e.g. functional simulations,
textual and syntactic analysis of code, and standards auditing [42]). Traceability
relations may also be used in system reviews concerned with the assessment of
requirements and design models. Haumer et al. [28], for instance, use goal attainment
and failure pre-traceability relations between goal oriented requirement models and
collections of observed cases of system usage encoded in multimedia (e.g., video and
audio), in order to inform review activities which are concerned with the assessment
of adequacy of these models.

Traceability relations have also been used in automated forms of verification
analysis, which are aimed at assessing the consistency of different models of the same
system [21]. Spanoudakis et al. [59], for instance, present an approach that can be

 24

used to rewrite formal requirement specifications in order to express overlap relations
known to hold between their parts and make them amenable to consistency checking
using theorem proving. Techniques for detecting overlap relations between structural
and behavioural object-oriented models of software systems, and deploying them for
checking the consistency of these models with respect to specific consistency rules
are also discussed in [60]. In [24], Fiutem and Antoniol extract design models from
the source code of a system, detect overlap relations between these models and the
original design models that had been developed prior to implementation by using
string matching algorithms, and use these relations to verify the consistency of the
implementation with the original design.

5.3 Traceability for software reuse

Researchers have widely acknowledged the potential of traceability relations in
identifying reusable artefacts in the software development life-cycle [4, 14, 69].
These artefacts may be at different levels of abstraction (e.g. source code, design or
requirement artefacts) and can be identified and reused through different scenarios,
which require the existence of different types of traceability relations.

In the context of the Software Information Base [14] dependency traceability
relations, called "correspondence" relations, are used to associate requirements
specifications with design models, and design models with source code. These
relations are established in the context of application frames which group artefacts of
specific (or families of) software applications and must be asserted manually.
Software engineers can follow these relations in order to locate concrete reusable
artefacts in an application frame at low levels of abstraction (i.e., design and source
code artefacts) once the possibility of reusing this frame (or parts of it) has been
established. This possibility is established by assessing the similarity of application
frame requirements with requirements for new systems. Similar approaches have
been suggested in [19] and [42]. In [42], reusable design elements are identified
through satisfiability, refinement or overlap relations that connect them with events,
pre-conditions, and post-conditions in use case models. Also, as suggested in [4],
traceability relations between source code artefacts (e.g. functions in code libraries)
and manual pages can help software engineers understand the functionality of the
former and appreciate the possibilities of using (or re-using) them in specific
contexts.

The traceability relations used in all the above approaches are vertical relations
 36. Different opportunities based on the deployment of horizontal traceability
relations between requirement specifications are suggested in [2] and [69]. The focus
of the latter approach is the reuse of coarse-grain requirement specifications
developed for families of software systems (or parts of these specifications) expressed
as structured text. This process is termed "requirements recycling" and supports the

 25

production of a requirements specification document for a new member in a system
family that shares features with existing members but may also introduce new
features, or drop and modify some of the existing ones. Driven from change scenarios
that incorporate feature introduction, modification and deletion requests, this
approach first locates parts in existing requirement documents that refer to the
required features. Then it uses overlap, dependency, and refinement traceability
relations that involve these parts to identify other parts in the documentation that can
also be recycled. The new requirement document is produced by copying and pasting
the latter parts. However, while preparing the new document, the approach suggests
the investigation of overlap relations in order to identify possibly redundant parts that
should be eliminated.

5.4 Traceability for artefact understanding

A significant driver for the generation of traceability relations is to use them in order
to understand the artefacts that they involve in reference to the context in which they
were created, or in reference to other artefacts related to them. This is particularly
important in cases where the people who need to access, understand, and maintain the
artefacts are not those who contributed to their creation, a phenomenon that is typical
in software maintenance.

The comprehension of source code artefacts is, for instance, one of the main
objectives underpinning the generation of traceability relations between such artefacts
and manual pages, requirement models [4, 38, 40] test cases, and system feature
descriptions (e.g. Software Reconnaissance technique [71]), or design and domain
analysis models [9]. The same objective of enabling code comprehension has driven
the development of approaches which can trace components of programs generated
by deductive synthesis (e.g. variable names, function calls) onto the specifications
from which they were derived. These approaches (see [66] for example) use the
formal proof that led to the generated program to construct overlap relations to parts
of the specification that drove the derivation.

Similarly, the use of rationalisation relations have been extensively suggested as
a means of providing explanation about the form of requirement and design artefacts
[28, 47, 50, 51]. Most of the traceability environments which support the recording of
such relations (e.g. PRO-ART [47], REMAP [50]) record rationale based on variants
of the IBIS model [13]. According to this model, artefact construction decisions can
be represented in terms of the main issues that were considered in the construction
process, the arguments that were articulated for these issues, and the positions taken
by different stakeholders with regards to these issues. A slightly different approach is
advocated in EColabor [62]. EColabor supports the recording of rationale for
requirements specifications articulated around questions, answers, reasons, and
commitments according to the Inquiry Cycle model using audio and video artefacts.

 26

EColabor provides support for fine-grain traceability relations between requirements
specifications and segments of audio and video artefacts, and facilities monitoring of
on-going discussions.

5.5 Empirical studies of the use of traceability

Empirical studies about the use of traceability in industrial organisations have
confirmed its deployment for supporting the activities outlined in the preceding
sections. They have also indicated significant differences in relevant practices, which
are influenced by numerous environmental, organisational, and technical factors.

Based on the findings of a case study of 16 organisations in the US, Ramesh [49]
has distinguished two different types of traceability users: the low-end and high-end
users. Low-end users use traceability relations to allocate requirements to system
components, inform system verification procedures, and manage changes in system
development and maintenance life cycle. However, they do not view traceability as an
important task in their development process and do not realise any form of "formal
methodology" in their traceability practice. High-end users, on the other hand, are
organisationally committed to traceability and tend to make extended use of it as part
of well-defined system development policies. Thus, they capture traceability relations
between artefacts created in the entire life cycle of a system and relations between
artefacts and rationale. They also tend to customise the tools that they use to provide
better support for their traceability practices.

As indicated in other empirical studies [5], the main factor that prohibits the wide
and effective use of traceability in industrial setting is the ability to establish
traceability relations that could support the required forms of analysis in cost-
effective ways. The diversity of the artefacts which are generated in the software
development life-cycle and the lack of interoperability between the tools that are used
to construct and manage them, make the capture of traceability relations expensive
and create the perception that the benefits from establishing traceability are not
justified. Additional costs also arise from the need to train users to use the relevant
tools and platforms. This makes traceability a cumbersome task for short-term
projects [5].

Finally, it should be noted that, since the accuracy of forms of analysis that
deploy traceability relations depends on the correctness and completeness of these
relations and these properties cannot be guaranteed for neither manually nor
automatically generated traceability relations, users tend to be reluctant to use
traceability relations in such forms of analysis. Empirical studies (e.g. [37]) have
confirmed this tendency and suggest that in cases where there is access to
experienced software engineers, organisations rely on them for certain forms of
analysis (e.g. change impact) rather than deploying recorded traceability relations,
despite the cost of this approach.

 27

6. Open Research Issues

As discussed in the preceding sections, software traceability has been the focus of
numerous as well as diverse research activities in the areas of software and systems
engineering over the last 15 years. Numerous approaches tackling different aspects
and issues of traceability have been proposed, and tools to support the establishment,
maintenance and deployment of traceability during system development have been
produced. However, despite these developments, empirical studies demonstrate that
current technology does not provide sufficient support for traceability and, as a
consequence, traceability is not widely adopted in industrial settings unless there is a
regulatory reason for doing so [5, 49, 26, 51].

In the following, we discuss the main issues, which in our view prevent the
widespread use of traceability in industrial settings and should be addressed by
further research. Our discussion has been based on our study of the literature, the
experience that we have gained from building systems to support traceability for
industrial organisations [61, 78], and discussions that have taken place as part of two
international workshops on traceability that we have organised over the last two
years, namely TEFSE 2002 [65] and TEFSE 2003 [66].

Evidently from Sections 2 and 3, there are relatively few approaches that can
automate the generation of traceability relations. With some exceptions, the relations
that can be generated by these approaches do not have the strong semantic meaning
required for the most important forms of analysis that can be based on traceability.
Overlap relations, for instance, which can be automatically generated by existing
approaches have a very general referential meaning and cannot support effectively
significant forms of analysis such as change impact analysis. On the other hand, a
close analysis of the reviewed approaches reveals that, with the exception of TOOR
[44], none of them can support the generation of satisfiability relations which are
important for analysis related to software verification. This problem becomes more
significant in the case of relations that involve artefacts, which incorporate chunks of
text such as requirement specifications, descriptions of rationale, and test cases. Most
of the existing approaches assume that traceability relations involving artefacts of
these types must be asserted manually and only a few of the reviewed approaches
(i.e., [4], [40] and [61]) support the automatic generation of traceability relations
involving them. Thus, as the manual assertion of traceability relations is labour
intensive, traceability is rarely established unless there is a regulatory reason for
doing so.

A possible way forward in the automatic generation of traceability relations
could be the standardisation of vocabularies that may be used to model systems in
specific application domains. Another solution along the same direction could be

 28

based on the development of ontologies. Ontologies can provide formal specifications
of common aspects of software systems and their domains (e.g. specifications of
certain types of requirements in abstract forms). Thus they can be used as a starting
point for building system models with the precise semantic meaning that is required
for the generation of traceability relations. For instance, requirement satisfiability
relations could be established by reasoning about the satisfiability of the axiomatic
definition of a requirement in ontology by other system artefacts such as design
specifications.

Another problem related to the generation of traceability relations is the lack of
mechanisms for verifying the correctness and completeness of these relations and,
therefore, establishing the necessary degree of trust that is required for deploying
them for further analysis with confidence. This is mainly an issue for approaches that
automate the generation of such relations. At the moment, very few of these
approaches provide mechanisms through which they could be tuned so as to achieve
better performance in terms of correctness and completeness. A notable exception to
this phenomenon is the rule base tracer discussed in [61]. This system uses historical
assessments of automatically generated traceability relations provided by the users to
compute degrees of confidence in the ability of its rules to generate correct relations
for new sets of artefacts. These degrees of confidence can be used to de-activate and
re-activate specific traceability rules if necessary [57]. It also uses machine learning
techniques for generating traceability rule that could improve the levels of
completeness that it achieves [58].

Clearly the levels of correctness and completeness which are required in different
settings depend on the type of the involved traceability relations and the types of
analysis that they are to be deployed for. In change impact analysis, for instance, it
may be more desirable to have high completeness rather than correctness rates. On
the other hand, in system verification and validation correctness seems to be more
important. The development of clear guidelines for making decisions about
performance criteria in specific settings and mechanisms for tuning different
approaches, in order to achieve better performance are issues that need to be
addressed by further research. It should be noted that mechanisms for verifying the
correctness and completeness of traceability relations are necessary also for
systems/approaches, which assume that such relations are asserted manually. This is
because evidence from our empirical investigations has indicated that it is not
unlikely to have different users suggesting different sets of relations for the same set
of artefacts, depending on their interpretation of the contents of these artefacts.

In the absence of sufficient support for the automatic generation and verification
of traceability relations, the cost of establishing traceability in industrial settings is
high. Given this, the systematic and widespread adoption of traceability as part of
software development processes would certainly require clear evidence about the
potential benefits from its deployment. Current empirical research fails to provide

 29

hard quantitative evidence about these benefits and, to the best of our knowledge;
methods that could be used to measure these benefits do not exist. Furthermore,
although it has been argued that the adoption of 33

traceability cannot be effective unless it is tailored to the needs of specific
projects and organisations [20], there is little (if any at all) methodological support for
identifying these needs and using them to inform traceability adoption and
deployment strategies. The development of methodological support for this purpose
should try to relate traceability establishment and deployment to the objectives of the
involved organisations, the existing software development strategies, and the needs of
the different types of stakeholders who are envisaged to make use of traceability (e.g.
managers, developers, customers, auditors etc.).

It should also be noted that the current level of tool support for traceability is one
of the main reasons for its limited use in industrial settings. This is because most of
the industrial tools and environments fail to provide support for all the types of
artefacts that are constructed in the software development life-cycle, as well as all the
types of traceability relations that may exist between these artefacts. Moreover,
existing tools and environments do not interoperate with other tools, which are likely
to be used in distributed and heterogeneous software development settings. Some
research prototypes (e.g. EBT [10], and TraceM [55]) appear to address the
interoperability problem. However, these tools do not adequately address the problem
of automatic generation of traceability relations, and it is unclear whether they can
achieve the data management effectiveness and robustness required in industrial
settings. To this end, further research and development is required for delivering the
right combination of capabilities.

7. Conclusions

In this article we have presented a roadmap of the research and practical work that
has been developed to support software system traceability. To produce this roadmap,
we have reviewed and presented: (a) different frameworks and classifications of
traceability relations, (b) different approaches to the generation of traceability
relations including manual, semi- automatic and automatic approaches, (c) different
approaches to the representation, recording, and maintenance of traceability relations
that underpin the architectural design and implementation of traceability tools and
environments, and (d) different ways of deploying traceability relations in the
software development process. Our review of the field has also identified issues that
require further investigation by both the research and industrial communities which
are also presented in the paper.

Our view is that the establishment and effective deployment of software
traceability is very significant in the software development life cycle, and that
existing approaches have made significant contributions to various aspects of

 30

traceability. However, it has to be appreciated that the provision of adequate support
for traceability is not an easy task and given the current state of the art in this field it
cannot be claimed that holistic and effective support for traceability is available. As
we discussed in Section 6, there is still a significant number of issues of traceability
which are open to further research and need to be addressed adequately before
traceability can be widely adopted in industrial settings and benefit system
development processes.

References

1. Alexander I., "Towards Automatic Traceability in Industrial Practice", Proceedings of the 1st

International Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE
2002), Edinburgh, UK, September 2002.

2. Alexander I., "SemiAutomatic Tracing of Requirement Versions to Use Cases – Experience and
Challenges, Proceedings of the 2nd International Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE 2003), Canada, October 2003.

3. Alexander I, Kiedaisch F, "Towards Recyclable System Requirements", Proceedings of the 9th
Annual IEEE International Conference and Workshop on the Engineering of Computer-Based
Systems, 9- 17, 2002

4. Antoniol G., Canfora G., Casazza G., De Lucia A., Merlo E., "Recovering Traceability Links
between Code and Documentation", IEEE Transactions on Software Engineering, 28(10), 970-983,
October 2002

5. Arkley P., Mason P., Riddle S., "Position Paper: Enabling Traceability", Proceedings of 1st
International Workshop on Traceability in Emerging Forms of Software Engineering, 61-65,
available from: http://www.soi.city.ac.uk/~zisman/traceworkshop.html

6. Bayer J., Widen T., "Introducing Traceability to Product Lines", Proceedings of the Software
Product Family Engineering: 4th International Workshop, PFE 2002, Bilbao, Spain, Lecture Notes
in Computer Science, Springer-Verlag, ISSN:0302-9743.

7. Bayet J., Flege O., Knauber P., Laqua R., Muthig D., Schmid K., Widen T., DeBaud J.M., "PuLSE:
A methodology to develop software product lines", in Symposium on Software Reusability, May
1999.

8. Bianchi A, Fasolino A.R, Vissagio G, "An Exploratory Case Study of the Maintenance
Effectiveness of Traceability Models" Proceedings of 8th International Workshop on Program
Comprehension (IWPC'00), 149-159, Limerick, Ireland, June 2000

9. Boldyreff C., Burd E.L., Hather R.M., Munro M., Younger E.J., "Greater Understanding Through
Maintainer Driven Traceability", Proceedings of the 4th International Workshop on Program
Comprehension (WPC’96), 1996.

10. Cleland-Huang J., Chang C., Wise J., "Supporting Event Based Traceability through High-Level
Recognition of Change Events", Proceedings of IEEE COMPSAC Conference, Oxford, England,
August 2002

11. Cleland-Huang J., Schmelzer D., "Dynamic Tracing Non-Functional Requirements through Design
patter Invariants", Proceedings of the 2nd International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE 2003), Canada, October, 2003.

12. Cleland-Huang J., Chang C.K., Sethi G., Javvaji K., Hu H., Xia J., "Automating Speculative
Queries through Event-based Requirements Traceability", Proceedings of the IEEE Joint
International Requirements Engineering Conference, Essen, Germany, September 2002.

 31

http://www.soi.city.ac.uk/~zisman/traceworkshop.html

13. Conklin J, Begeman M, "gIBIS: A Hypertext Tool for Exploratory Policy Discussion", ACM
Transactions on Office Information Systems, 6, 303-331, October 1988

14. Constantopoulos P, Jarke M, Mylopoulos Y, Vassiliou Y, "The Software Information Base: A
Server for Reuse", VLDB Journal, 4(1), 1-43, 1995

15. Cyre W., Thakar A., "Generating Validation Feedback for Automatic Interpretation of
Requirements", Formal Methods in System Design, Kluwer, 1997.

16. Cysneiros G., Zisman A., Spanoudakis G., "A Traceability Approach for i* and UML Models",
Proceedings of 2nd International Workshop on Software Engineering for Large-Scale Multi-Agent
Systems - ICSE 2003, May 2003

17. CORE, http://www.vtcorp.com
18. DeRose S., Maler E., Orchard D., "XML Linking Language (XLink)", version 1.0,

http://www.w3.org/TR/2000/REC-xlink-20010627/, World Wide Web Consortium.
19. Dick J., "Rich Traceability", Proceedings of the 1st International Workshop on Traceability for

Emerging forms of Software Engineering (TEFSE’02), Edinburgh, UK, September 2002.
20. Dogmes R., Pohl K., "Adopting Traceability Environments to Project-Specific Needs",

Communications of the ACM, 41(12), 55-62, 1998.
21. Easterbrook S, Callahan J, Wiels V, "V & V through Inconsistency Tracking and Analysis",

Proceedings of the 9th International Workshop on Software Specification and Design, 43-51 ,1998
22. Egyed A., "A Scenario-Driven Approach to Trace Dependency Analysis", IEEE Transactions on

Software Engineering, Vol. 9, No. 2, February, 2003.
23. Egyed A., Gruenbacher P., "Automatic Requirements Traceability: Beyond the Record and Replay

paradigm", Proceedings of the 17th IEEE International Conference on Automated Software
Engineering (ASE), Edinburgh, UK, September, 2002.

24. Fiutem R, Antoniol G., "Identifying Design-Code Inconsistencies in Object-Oriented Software: a
Case Study", Proceedings of International Conference on Software Maintenance, 94- 103, March
1998.

25. Gamma E., Heml R., Johnson R., and Vlissides J., “ Design Patters: Elements of Reusable Object-
Oriented Software”, Addison-Wesley Professional Computer Series, 1st Edition, ISBN 0201633612,
1995.

26. Gotel O., Finkelstein A., "An Analysis of the Requirements Traceability Problem", Proceedings of
the 1st International Conference in Requirements Engineering, 94-101, 1994.

27. Gotel O., Finkelstein A., "Contribution Structures", Proceedings of 2nd International Symposium on
Requirements Engineering, (RE '95), 100-107, 1995.

28. Haumer P, Pohl K, Weidenhaupt K, Jarke M, "Improving Reviews by Extended Traceability",
Proceedings of 32nd International Conference on System Sciences, 1999

29. Hayes J.H., Dekhtyar A., Osborne J., "Improving Requirements Tracing via Information Retrieval",
Proceedings of the 11th IEEE International Requirements Engineering Conference, Monterey Bay,
2003.

30. Integrated Chipware, RTM, www.chipware.com
31. Kaindl H., "The Missing Link in Requirements Engineering", Software Engineering Notes, June

1992, pp. 498-510
32. Kozlenkov A., Zisman A., "Are their Design Specifications Consistent with our Requirements?",

Proceedings of IEEE Joint International Requirements Engineering Conference - RE'02, Essen,
September 2002.

33. Lavazza L, Valetto G, "Requirements-based Estimation of Change Costs", Empirical Software
Engineering - An International Journal, 5(3), November 2000

 32

34. Lee C., Guadagno L., Jia X., "An Agile Approach to Capturing Requirements Traceability",
Proceedings of the 2nd International Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE 2003), Canada, October, 2003.

35. Letelier P., "A Framework for Requirements Traceability in UML-based Projects", Proceedings of
the 1st International Workshop on Traceability for Emerging Forms of Software Engineering
(TEFSE’02), Edinburgh, UK, September 2002.

36. Lindval M., Sandahl K., "Practical Implications of Traceability", Software Practice and Experience,
vol. 26, no. 10, 1996, pp 1161-1180.

37. Lindvall M, Sandahl K, "Traceability Aspects of Impact Analysis in Object Oriented Systems",
Software Maintenance: Research and Practice, 10(1), 37-57, 1998

38. Maletic J.I., Marcus A, "Supporting Program Comprehension Using Semantic and Structural
Information", Proceedings of 23rd International Conference on Software Engineering, 103-112,
Toronto, Canada, 2001.

39. Maletic J.I., Munson E.V., Marcus A., Nguyen T.N., "Using a Hypertext Model for Traceability
Link Conformance Analysis", Proceedings of the 2nd International Workshop on Traceability for
Emerging Forms of Software Engineering (TEFSE’03), Canada, October 2003.

40. Marcus A., Maletic J.I., "Recovering Documentation-to-Source-Code Traceability Links using
Latent Semantic Indexing", Proceedings of 25th International Conference Software Engineering,
2003

41. Mohan K., Ramesh B., "Managing variability with Traceability in product and Service Families",
Proceedings of the 35th Hawaii International Conference on System Sciences, IEEE, 2002.

42. NASA, "Preferred Reliability Practices: Independent Verification and Validation of Embedded
Software", Practice No. PD-ED-1228, Marshal Space Flight Centre

43. Perez-Minana E, Trew T, Krause P, "Issues on the Composability of Requirements Specifications
for a Product Family", Proceedings of the 1st International Workshop on Traceability in Emerging
Forms of Software Engineering, 47-53, September 2002

44. Pinheiro F., Goguen J., "An Object-Oriented Tool for Tracing Requirements", IEEE Software, 52-
64, March 1996.

45. Pinheiro F., "Formal and Informal Aspects of Requirements Tracing", Proceedings of 3rd Workshop
on Requirements Engineering (III WER), Rio de Janeiro, Brazil, 2000

46. Pohl K., Process-Centered Requirements Engineering. John Wiley Research Science Press, 1996.
47. Pohl K, PRO-ART: Enabling Requirements Pre-Traceability, Proceedings of the 2nd IEEE

International. Conference on Requirements Engineering (ICRE 1996), 1996
48. Pohl K. et al., "Product Family Development", Dagstuhl Seminar Report No.304,

http://www.dagstul.de/01161/report, 2001.
49. Ramesh B., "Factors Influencing Requirements Traceability Practice", Communications of the

ACM, 41(12), pp. 37-44, 1998.
50. Ramesh B., Dhar V., "Supporting Systems Development Using Knowledge Captured During

Requirements Engineering", IEEE Transactions in Software Engineering, June 1992, 498-510,
1992.

51. Ramesh B., Jarke M., "Towards Reference Models for Requirements Traceability", IEEE
Transactions in Software Engineering, 27(1), 58-93, 2001.

52. RDT, http://www.igatech.com/rdt/index.html
53. Riebisch M., Philippow I., "Evolution of Product Lines Using Traceability", Proceedings of the

Workshop on Engineering Complex Object-Oriented Systems for Evolution, in conjunction with
OOPSLA 2001, Tampa Bay, Florida, USA, October 2001.

 33

http://www.igatech.com/rdt/index.html

54. Savolainen J., "Tools for Design Rationale Documentation in the Development of a Product
Family", Proceedings of 1st Working IFIP Conference on Software Architecture, San Antonio,
Texas, 1999.

55. Sherba S.A., Anderson K.M., Faisal M., "A Framework for mapping Traceability Relationships",
Proceedings of the 2nd International Workshop on Traceability for Emerging forms of Software
Engineering (TEFSE 2003), Montreal, Canada, September, 2003.

56. Song X, Hasling B, Mangla G, Sherman B, "Lessons Learned from Building a Web-Based
Requirements Tracing System", Proceedings of 3rd International Conference on Requirements
Engineering, 41-50, 1998

57. Spanoudakis G., "Plausible and Adaptive Requirement Traceability Structures", Proceedings of the
14th International Conference in Software Engineering and Knowledge Engineering, Ischia, Italy,
pp. 135-142, 2002

58. Spanoudakis G., Avilla Garcez A., Zisman A., "Revising Rules to Capture Requirements
Traceability Relations: A Machine Learning Approach", Proceedings of the 15th International
Conference in Software Engineering and Knowledge Engineering (SEKE 2003), San Francisco,
USA, July 2003.

59. Spanoudakis G, Finkelstein A, Till D, "Overlaps in Requirements Engineering", Automated
Software Engineering Journal, 6(2), 171-198, 1999

60. Spanoudakis G., Kim H., "Supporting the Reconciliation of Models of Object Behaviour",
International Journal of Software and Systems Modelling, 2004 (to appear)

61. Spanoudakis G., Zisman A., Perez-Minana E., Krause P., "Rule-Based Generation of Requirements
Traceability Relations", Journal of Systems and Software, 72(2), pp. 105-127, 2004

62. Strens M, Sugden R., "Change Analysis: A Step towards Meeting the Challenge of Changing
Requirements", Proceedings of the IEEE Symposium and Workshop on Engineering of Computer-
Based Systems, Fredrichshafen, Germany, March 1996

63. Takahashi K, Potts C, Kumar V, Ota K, Smith J, " Hypermedia Support for Collaboration in
Requirements Analysis", Proceedings of 2nd International Conference on Requirements
Engineering, 31- 40, 1996

64. Teleologic, Teleologic DOORS, www.teleologic.com/products/doors
65. Spanoudakis G, Zisman A, "Proceedings of the 1st International Workshop on Traceability in

Emerging Forms of Software Engineering (organised in conjunction with the 17th IEEE
International Conference on Automated Software Engineering)", (Eds) Spanoudakis G., Zisman A.,
Perez-Minana E., September 2002.

66. Spanoudakis G, Zisman A, "Proceedings of the 2nd International Workshop on Traceability in
Emerging Forms of Software Engineering (organised in conjunction with the 18th IEEE
International Conference on Automated Software Engineering)", (Eds) Spanoudakis G., Zisman A.,
September 2003.

67. Van Baalen J., Robinson P., Lowry M., Pressburger T., "Explaining Synthesized Software",
Proceedings of the 13th IEEE Conference on Automated Software Engineering, 240-248, October
1998

68. Von Knethen A., "Automatic Change Support Based on a Trace Model", Proceedings of the 1st
International Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE’02),
Edinburgh, September 2002.

69. Von Knethen A., Paech B., Kiedaisch F., Houdek F., "Systematic Requirements Recycling through
Abstraction and Traceability", Proceedings of the IEEE International Requirements Engineering
Conference, Germany, September 2002.

70. Watkins R, Neal M, "Why and How of Requirements Tracing", IEEE Software, 104-106, July 1994

 34

http://www.teleologic.com/products/doors

71. Whitehead E., "An Architectural Model for Application Integration in Open Hypermedia
Environments", Proceeding of the 8th ACM Conference on Hypertext, 1-12, April 1997.

72. Wilde N, Casey C, " Early Field Experience with the Software Reconnaissance Technique for
Program Comprehension", Proceedings of the 1996 International Conference on Software
Maintenance (ICSM '96), 312-318, 1996

73. Xlinkit. http://www.systemwire.com/xlinkit.
74. Xu P., Ramesh B., "Supporting Workflow management Systems with Traceability", Proceedings of

the 35th Hawaii International Conference on System Sciences, IEEE, 2002.
75. Zowghi D., Offen R., "A Logical Framework for Modelling and Reasoning about the Evolution of

Requirements", Proceedings of 3rd International Symposium on Requirements Engineering,
Annapolis, MD, January 1997

76. Zisman A., Emmerich W., and Finkelstein A.. "Using XML to Build Consistency Rules for
Distributed Specifications", Proceedings of 10th International Workshop on Software Specification
and Design - IWSSD-10, San Diego, USA, November, 2000.

77. Zisman A., Spanoudakis G., Perez-Minana E., Krause P., "Towards a Traceability Approach for
Product Families Requirements", Proceedings of 3rd ICSE Workshop on Software Product Lines:
Economics, Architectures, and Implications, Orlando, USA, May 2002

78. Zisman A., Spanoudakis G., Perez-Minana E., Krause P., "Tracing Software Requirements
Artefacts", Proceedings of the 2003 International Conference on Software Engineering Research
and Practice (SERP'03), Las Vegas, Nevada, USA, June 2003.

79. Zisman A., Kozlenkov A., "Consistency Management of UML Specifications", Proceedings of 4th
International Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD'03), Lübeck, Germany, October, 2003.

 35

View publication statsView publication stats

https://www.researchgate.net/publication/255654361

	SOFTWARE TRACEABILITY: A ROADMAP
	Introduction
	References

